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ABSTRACT 

Airframes operating in the hypersonic regime are subjected to complex structural 

and thermal loads. Structural loads are a result of aggressive high G maneuvers, rapid 

vehicle acceleration and deceleration and dynamic pressure, while thermal loads are a 

result of aerodynamic heating. For such airframes, structural members are typically 

constructed from steel, titanium and nickel alloys. However, with most materials, rapid 

elevations in temperature lead to undesirable changes in material properties. In particular, 

reductions in strength and stiffness are observed, along with an increase in thermal 

conductivity, specific heat and thermal expansion. Thus, hypersonic airframes are 

typically designed with external insulation, active cooling or a thermal protection system 

(TPS) added to the structure to protect the underlying material from the effects of 

temperature. Such thermal protection may consist of adhesively bonded, pinned and 

bolted thermal protection layers over exterior panels. These types of attachments create 

abrupt changes in thermal expansion and stiffness that make the structure susceptible to 

cracking and debonding as well as adding mass to the airframe.  

One of the promising materials concepts for extreme environments that was 

introduced in the past is the so-called spatially tailored advanced thermal structures 

(STATS). The concept of STATS is rooted in functionally graded materials (FGMs), in 

which a directional variation of material properties exists. These materials are essentially 

composites and consist of two or more phases of distinct materials in which the volume 

fractions of each phase continuously change in space. Here, the graded material will 

serve a dual-purpose role as both the structural/skin member and thermal management 

with the goal of reducing the weight of the structure while maintaining structural 

soundness. This is achieved through the ability to tailor material properties to create a 

desired or enhanced thermomechanical response through spatial variation (e.g., grading).  

The objective of this study is to present a computational framework for modeling 

and evaluating the thermomechanical response of STATS and FGMs for highly 
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maneuverable hypersonic (Mach > 5) airframes. To meet the objective of this study, four 

key steps have been defined to study the thermomechanical response of such materials in 

extreme environments. They involve: (1) modeling of graded microstructures; (2) 

validation of analytical and numerical modeling techniques for graded microstructures; 

(3) determination of effective properties of variable composition composites; (4) 

parametric studies to evaluate the performance of FGMs for use in the hypersonic 

operating environment; and (5) optimization of the material spatial grading in hypersonic 

panels aiming to improve the thermomechanical performance.  

Modeling of graded microstructures, representing particulate reinforced FGMs, 

has been accomplished using power law distribution functions to specify the spatial 

variation of the constituents. Artificial microstructures consisting of disks and spheres 

have been generated using developed algorithms. These algorithms allow for the creation 

of dense packing fractions up to 0.61 and 0.91 for 2D and 3D geometry, respectively.  

Effective properties of FGMs are obtained using micromechanics models and 

finite element analysis of representative volume elements (RVEs). Two approaches have 

been adopted and compared to determine the proper RVE for materials with graded 

microstructures. In the first approach, RVEs are generated by considering regions that 

have a uniform to slow variation in material composition (i.e., constant volume fraction), 

resulting in statistically homogenous piecewise RVEs of the graded microstructure 

neglecting interactions from neighboring cells. In the second approach, continuous RVEs 

are generated by considering the entire FGM. Here it is presumed that modeling of the 

complete variation in a microstructure may influence the surrounding layers due to the 

interactions of varying material composition, particularly when there is a steep variation 

in material composition along the grading direction. To determine these effects of 

interlayer interactions, FGM microstructures were generated using three different types 

of material grading functions—linear, quadratic and square root—providing uniform, 

gradual and steep variations, respectively. Two- and three-dimensional finite element 
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analysis was performed to determine the effective temperature-dependent material 

properties of the composite over a wide temperature range. The outcome of the 

computational analysis shows that the similar effective properties are obtained by each of 

the modeling approaches. Furthermore, the obtained computational results for effective 

elastic, thermal and thermal expansion properties are consistent with the known analytical 

bounds.   

The resulting effective temperature-dependent material properties were used to 

evaluate the time-dependent thermostructural response and effectiveness of FGM 

structural panels. Structural panels are subjected to time- and spatial-dependent thermal 

and mechanical loads resulting from hypersonic flight over a representative trajectory. 

Mechanical loads are the by-product of aggressive maneuvering at high air speeds and 

angles of attack. Thermal loads as a result of aerodynamic heating are applied to the 

material systems as laminar, turbulent and transitional heat flux on the outer surface. 

Laminar and turbulent uniform heat fluxes are used to evaluate the effectiveness of FGM 

panels graded in the through-thickness direction only. Transitional heat fluxes are used to 

evaluate the effectiveness of FGMs graded in two principal directions, e.g., through-

thickness and the surface parallel to flow. The computational results indicate that when 

subjected to uniform surface heat flux, the graded material system can eliminate through-

thickness temperature gradients that are otherwise present in traditional thermal 

protection systems. Furthermore, 2D graded material systems can also eliminate through-

thickness temperature gradients and significantly reduce in-plane surface temperature 

gradients when subjected to non-uniform surface aerodynamic heating.   
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PUBLIC ABSTRACT 

Aircraft operating in the hypersonic regime are subjected to complex thermal and 

structural loads. Airframes operating in this environment are typically constructed from 

structural materials protected from the effects of temperature by a thermal protection 

system (TPS) that is chemically or mechanically bonded over structural panels which can 

make structures susceptible to cracking and debonding. Thus the design of next-

generation agile hypersonic airframes demands advanced materials capable of operating 

in extreme environments.  

One promising material concept for extreme environments that was recently 

introduced is the idea of spatially tailored advanced thermal structures (STATS). The 

notion of STATS finds its roots in functionally graded materials (FGMs), in which spatial 

dependence of material properties exists. Particularly, metal-ceramic graded structures 

find novel applications as multifunctional thermostructural members through tailoring 

material properties to create desirable or enhanced thermostructural responses.  

In the present thesis, a computational framework for modeling and evaluating the 

thermomechanical response of STATS for highly maneuverable hypersonic airframes is 

presented. The framework is formulated around the coupling of effective property 

estimation, thermostructural analysis and optimization. Numerical models based on 

micromechanical methods are used to confidently predict effective temperature- and 

spatial-dependent material properties. Using representative hypersonic loads, the 

thermostructural response is determined using finite element analysis (FEA) over a 

characteristic trajectory. Lastly, using surrogate modeling techniques, optimal material 

distribution is determined using optimization techniques to produce a minimum mass 

system capable of withstanding the extreme operating requirements.  
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CHAPTER 1 

 INTRODUCTION 

 Background and Motivation 

Recent interest in high-speed intercept missiles and fast-response weapons 

operating in the hypersonic regime has resulted in considerable effort on the development 

of airframes capable of operating in this environment. One of the most difficult 

engineering challenges facing such development is the complex coupling of the fluid-

thermal-structural interactions (FTSI) taking place at such high speeds [1]. In such flow 

fields, extreme temperatures are generated on the vehicle surface as a result of 

aerodynamic heating, while aerodynamic pressure places substantial external loading on 

the airframe structure. Moreover, highly maneuverable vehicles generate additional 

structural loads with aggressive trajectories, rapid acceleration and deceleration and 

erratic corrections in trajectory. As a result, a highly non-linear coupled 

thermomechanical response is generated. In current systems, the design engineering must 

rely on traditional materials, structural and thermal, to create structures capable of 

operating in such harsh environments. To bear the brunt of structural loads imposed on 

the airframe at these airspeeds, steel, titanium and nickel alloys are popular choices due 

to their high strength and temperature tolerance. However, with most materials, rapid 

elevations in temperature lead to undesirable changes in material properties. In particular, 

reductions in strength and stiffness are observed, along with an increase in thermal 

conductivity, specific heat and thermal expansion. To combat these issues, a thermal 

protection system (TPS) or a thermal barrier coating (TBC) is used to protect and/or 

mitigate the underlying material from the effects of temperature. 

Common materials for TPSs and TBCs are ceramics, carbon-carbon (C/C) 

composites and syntactic foams, bonded, laminated or mechanically fastened to the 
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underlying skin material. While thermal ceramics have high stiffness and temperature 

tolerance, these desirable characteristics come at the expense of high density. Light-

weight C/C composites also have high service temperatures but have poor insulation 

efficiency. Lastly, syntactic foams, particularly silicone-based ones, have low density, 

high operating temperature and high insulation efficiency, but provide little to no 

structural value to airframes. Moreover, because TPSs/TBCs are layered onto the skin 

surface, a strong discontinuity exists on the interfacial layer between the two materials. 

This discontinuity can give rise to stress concentrations as a result of large differences in 

the material’s thermal expansion and elastic properties, resulting in an overdesigned 

structure, increased weight, reduced performance, decrease in service life, etc. Therefore, 

efficient operation in this environment requires materials capable of withstanding 

extreme thermal and structural environments. Ideal materials would possess combinations 

of desirable characteristics from structural materials as well as thermal TPS/TBC 

materials.  

A material concept recently introduced to meet these desirable material 

characteristics for airframes operating in this extreme environment is spatially tailored 

advanced thermal structures (STATS) [2]. The concept of spatial tailoring is rooted in the 

notion of functionally graded materials (FGMs), in which directional variation of material 

properties (typically in one direction) exists. FGMs are a unique class of heterogeneous 

composite materials consisting of at least two phases, in which the volume fraction of 

each phase continuously varies in space. This unique attribute makes FGMs ideal 

material candidates for structures relying on traditional TPSs/TBCs, by combining the 

attributes of structural and thermal materials and reducing large differences in constituent 

material parameters. Furthermore, FGMs provide the capability to tailor the macroscopic 

structural response via spatial variation (i.e., grading) in the materials properties. Here a 

desired or enhanced structural response can be achieved using information about the 

anticipated thermal and structural loads. For example, in hypersonic applications, in 
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addition to the high through-thickness thermal gradients and structural loads, interaction 

of the flow field with skin surfaces results in non-uniform temperature distribution 

parallel to the flow field. Thus, further optimization of the airframe is possible with 2D 

and 3D continuous grading of the material by improving the thermal and structural 

properties of the structure. 

 Objectives of the Proposed Study 

The primary objective of this study is to develop a computational framework for 

modeling and evaluating the thermomechanical response of FGMs for highly 

maneuverable hypersonic airframes. To meet the proposed objective four major research 

hurdles have been defined. They involve: (1) modeling of graded microstructures; (2) 

validation of analytical and numerical modeling techniques for graded microstructures; 

(3) determination of effective properties of variable composition composites; (4) 

parametric studies to evaluate the performance of FGMs for use in the hypersonic 

operating environment; (5) optimization of the material spatial grading in hypersonic 

panels aiming to improve the thermomechanical performance.  

 Organization of the Thesis Proposal 

The thesis proposal is organized as follows. CHAPTER 2 presents a literature 

review on existing micromechanical theories, models and methods for predicting the 

effective elastic, thermoelastic and thermal properties of traditional composite materials. 

These material models are useful in establishing approximations as well as bounds on the 

overall effective composite material parameters.   

CHAPTER 3 provides details on the mathematical modeling of FGMS needed for 

future analysis and direct applications. Here, mathematical representations of the 

continuous graded microstructures are defined for material variation in one and two 

dimensions.  
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CHAPTER 4 lays out a computational framework for determining the effective 

material properties of heterogeneous composite materials. This framework involves 

determining a proper definition for the representative volume element (RVE) for graded 

microstructures. This in-depth analysis involves comparing effective properties estimated 

by several numerical models to determine the effect of grading on the effective properties 

and the influence of particle interactions on the homogenization of the material response. 

Additionally, the hypothesis of using conventional micromechanical models for 

predicting the effective properties of traditional fixed volume fraction composites is 

examined. The obtained effective properties are verified using rigorous analytical 

methods and verified by means of experimentally obtained data available in the literature. 

Also, a numerical study is performed on the assumption of the transition zone of the two-

phase graded composite system. This study aims to evaluate the local effective material 

properties of graded structures when information regarding the evolution of the material 

grading is not readily available.  Finally, the two-phase framework is extended to three-

phase composites (reinforcement, matrix and porosity) to investigate the effects of 

porosity or voids on the effective material response.  

CHAPTER 5 provides parametric studies to evaluate the performance of FGMs 

for use as a multifunctional TPS/TBC and structural member operating in the hypersonic 

environment. This analysis begins with establishing a thermal and thermomechanical 

benchmark for a typical TPS/skin material system for a generic monocoque hypersonic 

missile over a representative flight trajectory. This benchmark consists of a titanium (Ti-

6Al-4V) skin and Excelis Acusil® II TPS subjected to thermal and structural loads. The 

thermal and structural response of the system is then compared to that of varying material 

systems graded in the through-thickness direction only. Parametric studies are performed 

to evaluate material grading parameters and to evaluate the influence of grading on the 

thermostructural response. The analysis is also extended to include the effects of non-

uniform in-plane surface temperatures by simulating the effects of a laminar to turbulent 



www.manaraa.com

 
 

5 
 

(transitional) boundary layer. This simulation allows for the evaluation of the effects of 

2D material grading on the thermostructural response. Using the aforementioned 

modeling technique, a series of constrained optimization analyses are performed to 

illustrate the potential for performance improvement by implementing spatially tailored 

materials into the thermostructural design.      
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CHAPTER 2  

HOMOGENIZATION THEORIES AND METHODS: LITERATURE REVIEW  

 Homogenization Background 

The aim of this chapter is to provide a review of some of the homogenization 

techniques developed for use with classical composite materials. The review is organized 

to include the following analytical and semi-analytical homogenization topics: (1) 

Effective elasticity, (2) Effective thermoelasticity, (3) Effective thermal conductivity and 

(4) Effective specific heat. While there exists a plethora of proposed models and theories 

in relevant literature, only a few directly relevant to the current study will be presented. 

 Theoretical Bounds on Elastic Constants 

2.2.1 Analytical and Semi-Analytical Approaches 

The estimation of effective elastic material constants has been by far the most 

widely investigated aspect of composite materials. The effective elastic constants are 

crucial to the design of structures and systems with composite materials. Many analytical 

and semi-analytical models have been developed with the aim of evaluating the effective 

elastic properties of different types of heterogeneous composites. In the case of most of 

the following methods, the bulk and shear elastic moduli are determined. For most 

practical applications, the Young’s modulus or elastic modulus is the material constant of 

interest. Here, the Young’s modulus, E, is determined through the well-known relation 

 𝐸𝐸 =
9𝐾𝐾𝐾𝐾

3𝐾𝐾 + 𝐺𝐺
 (2.1) 

were K and G are the bulk and shear modulus, respectively.  
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2.2.2 Mixture Rules: Voigt and Reuss Bounds 

Voigt [3] is typically credited with the earliest study of the effective mechanical 

properties of composite materials in 1889. Voigt assumed that the strain field in the 

composite was uniform throughout the material, leading to an average elastic tensor 𝑪𝑪. 

Nearly 40 years later, Reuss [4] provided a complementary contribution to the work of 

Voigt on the subject matter. Reuss assumed that the stress field in the composite was 

uniform throughout, leading to an average compliance tensor 𝑺𝑺. The Voigt estimation for 

the effective elastic tensor 𝑪𝑪∗ is given by 

 𝑪𝑪∗ = �𝜙𝜙𝑖𝑖𝑪𝑪𝑖𝑖 ,

𝑁𝑁

𝑖𝑖=1

 (2.2) 

where 𝑪𝑪𝑖𝑖 and 𝜙𝜙𝑖𝑖 are the elastic tensor and volume fraction of the i-th phase, respectively.  

Similarly, the Reuss estimation for the effective compliance tensor 𝑺𝑺∗ is given by  

 𝑺𝑺∗ = �𝜙𝜙𝑖𝑖𝑺𝑺𝑖𝑖 ,

𝑁𝑁

𝑖𝑖=1

 (2.3) 

where 𝑺𝑺𝑖𝑖 is the compliance tensor of the i-th phase and 𝑺𝑺𝑖𝑖 = 𝑪𝑪𝑖𝑖−1. Later, in 1952, Hill [5] 

provided a significant contribution by proving that the arithmetic mean of Voigt and the 

harmonic mean of Reuss are the theoretical maximum and minimum potential effective 

properties. Thus, Voigt and Reuss are taken as the upper and lower bounds, respectively, 

for the effective elastic constants. These bounds are often, and in this document will be, 

referred to as the rule-of-mixtures (ROMs). Additionally, Hill provided an estimation of 

the effective property, by considering the average of the Voigt and Reuss approximations.   
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2.2.3 Theoretical Bounds of Hashin and Shtrikman 

A fundamental shortcoming of the ROMs occurs when the elastic properties begin 

to differ by an order of magnitude or more (e.g., the stiffness of carbon fiber compared to 

a polymer matrix in carbon fiber polymer matrix composites). In this case, the bounds 

become quite wide, and estimation of the effective properties becomes problematic. 

Tighter bounds for linear elasticity were proposed by Hashin and Shtrikman [6] based on 

variational principles of the strain energy. They consider the minimum potential energy 

and the minimum complementary potential energy of the system. The bounds are 

asymptotic and are the tightest bounds for composites with isotropic phases when 

information about the geometry and distribution of the microstructure is not known. 

Furthermore, the bounds assume that the mixture of phases is statistically homogenous, 

and that there is perfect bonding between the matrix and reinforcement. For a multi-phase 

composite, the Hashin and Shtrikman (H-S) bounds for the effective elastic properties are 

calculated as follows: 

 𝐾𝐾1∗ = 𝐾𝐾1 + 𝐴𝐴1
1+𝛼𝛼1𝐴𝐴1

,           𝐾𝐾2∗ = 𝐾𝐾𝑛𝑛 + 𝐴𝐴𝑛𝑛
1+𝛼𝛼𝑛𝑛𝐴𝐴𝑛𝑛

, (2.4) 

where 

 𝛼𝛼1 = −
3

3𝐾𝐾1 + 4𝐺𝐺1
,     𝛼𝛼𝑛𝑛 = −

3
3𝐾𝐾𝑛𝑛 + 4𝐺𝐺𝑛𝑛

, (2.5) 

 

 𝐴𝐴1 = �
𝜙𝜙𝑟𝑟

1
𝐾𝐾𝑟𝑟 − 𝐾𝐾1

− 𝛼𝛼1

𝑟𝑟=𝑛𝑛

𝑟𝑟=2

,     𝐴𝐴𝑛𝑛 = �
𝜙𝜙𝑟𝑟

1
𝐾𝐾𝑟𝑟 − 𝐾𝐾𝑛𝑛

− 𝛼𝛼𝑛𝑛

𝑟𝑟=𝑛𝑛−1

𝑟𝑟=1

, (2.6) 

resulting in the bulk modulus bounds  
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 𝐾𝐾1∗ < 𝐾𝐾 < 𝐾𝐾2∗, (2.7) 

where 𝐾𝐾1∗and 𝐾𝐾2∗ are the lower and upper bounds of the bulk modulus 𝐾𝐾 for the system 

with 𝐾𝐾1 and 𝐾𝐾𝑛𝑛 representing the minimum and maximum bulk modulus of the 

constituents, while 𝑛𝑛 is the number of phases in the system. For the same multi-phase 

composite, the effective shear modulus is calculated using the minimum and maximum 

material phase shear modulus values 𝐺𝐺1 and 𝐺𝐺𝑛𝑛, respectively. The resulting shear 

modulus bounds are as follows:   

 𝐺𝐺1∗ = 𝐺𝐺1 +
1
2
�

𝐵𝐵1
1 + 𝛽𝛽1𝐵𝐵1

� ,     𝐺𝐺2∗ = 𝐺𝐺2 +
1
2
�

𝐵𝐵𝑛𝑛
1 + 𝛽𝛽𝑛𝑛𝐵𝐵𝑛𝑛

�, (2.8) 

where 

 𝛽𝛽1 = −
3(𝐾𝐾1 + 2𝐺𝐺1)

5𝐺𝐺1(3𝐾𝐾1 + 4𝐺𝐺1),     𝛽𝛽𝑛𝑛 = −
3(𝐾𝐾𝑛𝑛 + 2𝐺𝐺𝑛𝑛)

5𝐺𝐺𝑛𝑛(3𝐾𝐾𝑛𝑛 + 4𝐺𝐺𝑛𝑛), (2.9) 

 

 𝐵𝐵1 = �
𝜙𝜙𝑟𝑟

1
2(𝐺𝐺𝑟𝑟 − 𝐺𝐺1) − 𝛽𝛽1

𝑟𝑟=𝑛𝑛

𝑟𝑟=2

,     𝐵𝐵𝑛𝑛 = �
𝜙𝜙𝑟𝑟

1
2(𝐺𝐺𝑟𝑟 − 𝐺𝐺𝑛𝑛) − 𝛽𝛽𝑛𝑛

𝑟𝑟=𝑛𝑛−1

𝑟𝑟=1

, (2.10) 

resulting in the shear modulus bounds  

 𝐺𝐺1∗ < 𝐺𝐺 < 𝐺𝐺2∗. (2.11) 

It has been shown that 𝐾𝐾1∗ is the exact result for the effective bulk modulus for a two-

phase composite (𝑛𝑛 = 2), in which a matrix first-phase is embedded with a spherical 

inclusion second-phase material distributed in a particular way. In a similar fashion, 𝐾𝐾2∗ is 
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the exact result when spherical inclusions of the first phase are embedded in a matrix 

comprised of the second-phase material. The same proof also applies to the effective 

shear modulus of the same two-phase system in which 𝐺𝐺1∗ or 𝐺𝐺2∗ is the exact result. For 

this two-phase composite, the effective elastic moduli are calculated using 𝑛𝑛 = 2 in Eqs. 

(2.4-2.10). The resulting bounds for the effective bulk modulus are: 

 𝐾𝐾1∗ = 𝐾𝐾1 +
𝜙𝜙2

1
𝐾𝐾2 − 𝐾𝐾1

+ 3𝜙𝜙1
3𝐾𝐾1 + 4𝐺𝐺1

,     𝐾𝐾2∗ = 𝐾𝐾2 +
𝜙𝜙1

1
𝐾𝐾1 − 𝐾𝐾2

+ 3𝜙𝜙2
3𝐾𝐾2 + 4𝐺𝐺2

 (2.12) 

and the effective shear modulus bounds are 

 

𝐺𝐺1∗ = 𝐺𝐺1 +
𝜙𝜙2

1
𝐺𝐺2 − 𝐺𝐺1

+ 6(𝐾𝐾1 + 2𝐺𝐺1)𝜙𝜙1
5𝐺𝐺1(3𝐾𝐾1 + 4𝐺𝐺1)

, 

 

  𝐺𝐺2∗ = 𝐺𝐺2 +
𝜙𝜙1

1
𝐺𝐺1 − 𝐺𝐺2

+ 6(𝐾𝐾2 + 2𝐺𝐺2)𝜙𝜙2
5𝐺𝐺2(3𝐾𝐾2 + 4𝐺𝐺2)

.  

(2.13) 

The two-phase composite bounds of Eqs. (2.12) and (2.13 ) provide the tightest possible 

bounds for general isotropic materials without restrictions on the geometry of the 

microstructure. 

2.2.4 Self-Consistent Model 

The self-consistent method (SCM) is typically credited to Hill [7] and Budiansky 

[8], who were focusing on spherical particles and aligned fibers. In this scheme, the 

effective properties are determined by approximating the interactions among the 

constituents by those between the constituent and the homogenized composite. Simply 

put, the model assumes that the effective material properties are determined by the stress 

and strain states of the material surrounding one inclusion. The stress and strain fields are 



www.manaraa.com

 
 

11 
 

assessed based on a single inclusion solution assuming that the inclusion is embedded in 

the matrix with unknown effective elastic constants. As shown by Lydzba [9], the SCM 

hydrostatic components of the strain localization tensor for the 𝑛𝑛-th phase 𝑨𝑨𝑛𝑛,𝐻𝐻
𝑆𝑆𝑆𝑆∗ can be 

written as: 

 𝑨𝑨𝑛𝑛,𝐻𝐻
𝑆𝑆𝑆𝑆∗ =

𝐾𝐾∗ + 4
3𝐺𝐺

∗

𝐾𝐾𝑛𝑛 + 4
3𝐺𝐺

∗
, (2.14) 

where 𝐾𝐾𝑛𝑛 is the bulk modulus of the 𝑛𝑛-th phase and 𝐾𝐾∗ and 𝐺𝐺∗ are the bulk and shear 

moduli of the homogenized composite. Equation (2.14) must be satisfied for all 

components of the strain tensor 〈𝝐𝝐〉0, resulting in: 

 �𝜙𝜙𝑛𝑛(𝑪𝑪∗ − 𝑪𝑪𝑛𝑛)𝑨𝑨𝑛𝑛𝑆𝑆𝑆𝑆∗
𝑁𝑁

𝑛𝑛=1

= 0. (2.15) 

For a macroscopically isotropic medium, Eq. (2.15) can be reduced to  

 �𝜙𝜙𝑛𝑛(𝐾𝐾∗ − 𝐾𝐾𝑛𝑛)𝑨𝑨𝑛𝑛,𝐻𝐻
𝑆𝑆𝑆𝑆∗

𝑁𝑁

𝑛𝑛=1

= 0. (2.16) 

 �𝜙𝜙𝑛𝑛(𝐺𝐺∗ − 𝐺𝐺𝑛𝑛)𝑨𝑨𝑛𝑛,𝑆𝑆
𝑆𝑆𝑆𝑆∗

𝑁𝑁

𝑛𝑛=1

= 0. (2.17) 

Equations (2.16) and (2.17) create a non-linear system of equations to determine the 

effective homogenized bulk modulus 𝐾𝐾∗ and shear modulus 𝐺𝐺∗. When spherical inclusion 

geometry is introduced into the above system, Eqs. (2.16) and (2.17) can be reduced to  

 �𝜙𝜙𝑛𝑛
(𝐾𝐾∗ − 𝐾𝐾𝑛𝑛)

𝐾𝐾𝑛𝑛 + 4
3𝐺𝐺

∗
= 0.

𝑁𝑁

𝑛𝑛=1

 (2.18) 
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 �𝜙𝜙𝑛𝑛
(𝐺𝐺∗ − 𝐺𝐺𝑛𝑛)

𝐺𝐺𝑛𝑛 + 𝐺𝐺∗(9𝐾𝐾∗ + 8𝐺𝐺∗)
6(𝐾𝐾∗ + 2𝐺𝐺∗)

= 0.
𝑁𝑁

𝑛𝑛=1

 (2.19) 

This non-linear set of equations can be solved in an iterative process to determine the 

effective elastic constants. For reference, the strain localization tensors used in the Self-

Consistent scheme have been tabulated by Lydzba  [9] for spherical, needle and disk 

geometry. 

 Theoretical Bounds on Thermal Expansion 

2.3.1 Coefficients of Thermal Expansion 

For the most part, natural materials tend to expand when heated, which is referred 

to as thermal expansion. Thermal expansion on the macro scale is commonly defined as 

the change in a material’s size as a result of a change in temperature. The linear 

coefficient of thermal expansion (CTE) is defined as: 

 𝛼𝛼𝑖𝑖𝑖𝑖 =
𝜕𝜕𝜖𝜖𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

, (2.20) 

where the strain, 𝜖𝜖𝑖𝑖𝑖𝑖, and CTE, 𝛼𝛼𝑖𝑖𝑖𝑖, are second-order symmetric tensors and 𝑇𝑇 is the 

temperature. Over a small differential temperature Δ𝑇𝑇, the strain is typically taken as 

directly proportional to the CTE, and the constitutive thermo-mechanical relationship 

between the stress 𝜎𝜎 and strain 𝜖𝜖 and temperature change Δ𝑇𝑇 is given by: 

 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝑪𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜖𝜖𝑖𝑖𝑖𝑖 − 𝑪𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼𝑘𝑘𝑘𝑘Δ𝑇𝑇, (2.21) 

with 𝑪𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 containing the components of the fourth-order stiffness tensor.   
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2.3.2 Analytical and Semi-Analytical Approaches 

The estimation of effective thermal properties of composite materials has been 

rigorously studied for many years. Many analytical and semi-analytical models have been 

developed with the aim of evaluating the effective coefficient of thermal expansion of 

different types of composite materials. Some of these models are restricted to composites 

made from isotropic phases [10-12], while others are developed with a more general 

approach [13, 14]. A few of these models that take into consideration the volume fraction 

and material properties of each phase are briefly discussed in the following sections.   

2.3.3 Mixture Rules of Voigt and Reuss 

In this case, the ROM is used as a first order-approximation of the effective CTE. 

The ROM models for CTE are extensions of the early Voigt and Reuss expressions for 

the estimation of the effective elastic moduli. Voigt and Reuss approximations are 

derived by assuming a uniform strain and stress, respectively. The Voigt approximation 

for the effective thermal expansion coefficient is given by:    

   

 

  

𝛼𝛼𝑉𝑉∗ =
〈𝐸𝐸𝐸𝐸〉
〈𝐸𝐸〉

=
𝜙𝜙1𝐸𝐸1𝛼𝛼1 + 𝜙𝜙2𝐸𝐸2𝛼𝛼2
𝜙𝜙1𝐸𝐸1 + 𝜙𝜙2𝐸𝐸2

, (2.22) 

where 𝜙𝜙𝑖𝑖 and 𝛼𝛼𝑖𝑖 are the volume fraction and the coefficients of thermal expansion of the 

single isotropic phases of the composite, respectively, and 𝐸𝐸𝑖𝑖 is the Young’s modulus of 

the i-th phase. The Reuss approximation is defined as:   

 𝛼𝛼𝑅𝑅∗ = 〈𝛼𝛼〉 = 𝜙𝜙1𝛼𝛼2 + 𝜙𝜙2𝛼𝛼1. (2.23) 
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The Voigt and Reuss approximations, Eqs. (2.23) and (2.22), respectively, are typically 

taken as the extreme bounds of the effective thermal expansion. While these bounds are 

some of the earliest and simplest, they are generally regarded as a poor approximation of 

the effective CTE. This is particularly emphasized when the material properties of the 

constituent materials differ greatly.   

2.3.4 Turner Model 

In 1946, Turner [10] developed a model for estimating the effective CTE based on 

the assumption that all phases in the composite have the same change in dimension and 

rate of change due to increased temperature. By assuming that shear deformation is 

negligible, equilibrium force balance gives rise to the first-order approximation given by: 

 𝛼𝛼𝑇𝑇∗ =
〈𝐾𝐾𝐾𝐾〉
〈𝐾𝐾〉

=
𝜙𝜙1𝐾𝐾1𝛼𝛼1 + 𝜙𝜙2𝐾𝐾2𝛼𝛼2
𝜙𝜙1𝐾𝐾1 + 𝜙𝜙2𝐾𝐾2

, (2.24) 

where 𝐾𝐾𝑖𝑖  is the bulk modulus of the i-th phase.   

2.3.5 Schapery Model 

Using thermoelastic energy principles, Schapery [13] derived upper and lower 

bounds for the effective CTE. The derivation assumes a composite made up of n phases, 

each of which has isotropic mechanical and thermal properties with the bounds 𝛼𝛼𝑆𝑆𝐿𝐿∗ ≤

𝛼𝛼∗ < 𝛼𝛼𝑆𝑆𝑈𝑈∗given as: 



www.manaraa.com

 
 

15 
 

 

𝛼𝛼𝑆𝑆𝑈𝑈∗

𝛼𝛼𝑆𝑆𝐿𝐿∗
} =

1
〈1/𝐾𝐾〉 − 1/〈𝐾𝐾〉

{〈𝛼𝛼〉 �
1
𝐾𝐾∗ −

1
〈𝐾𝐾〉

�

+
〈𝐾𝐾𝐾𝐾〉
〈𝐾𝐾〉

�〈
1
𝐾𝐾
〉 −

1
𝐾𝐾∗�

± ϕ�〈
1
𝐾𝐾
〉 −

1
𝐾𝐾∗�

1
2
�

1
𝐾𝐾∗ −

1
〈𝐾𝐾〉

�
1
2

} 

(2.25) 

where 

 

ϕ = ��〈
1
𝐾𝐾
〉 −

1
〈𝐾𝐾〉

� �〈𝐾𝐾𝛼𝛼2〉 −
〈(𝐾𝐾𝐾𝐾)2〉
〈𝐾𝐾〉

�

− �〈𝛼𝛼〉 −
〈𝐾𝐾𝐾𝐾〉
〈𝐾𝐾〉

�
2

�
1/2

 

(2.26) 

In the above equation, 𝐾𝐾∗ is the effective composite bulk modulus, which can be 

determined using a variety of analytical approximations, bounds or experimentally 

obtained values. In the case of an isotropic two-phase composite, the bounds of Eq. (2.25) 

are reduced to 

 𝛼𝛼𝑆𝑆𝐿𝐿∗ = 𝛼𝛼2 +
𝐾𝐾2
𝐾𝐾𝑈𝑈

(𝐾𝐾1 − 𝐾𝐾𝑈𝑈)(𝛼𝛼2 − 𝛼𝛼1)
(𝐾𝐾1 − 𝐾𝐾2)  (2.27) 

and 

 𝛼𝛼𝑆𝑆𝑈𝑈∗ = 𝛼𝛼2 +
𝐾𝐾2
𝐾𝐾𝐿𝐿

(𝐾𝐾1 − 𝐾𝐾𝐿𝐿)(𝛼𝛼2 − 𝛼𝛼1)
(𝐾𝐾1 − 𝐾𝐾2) . (2.28) 

Here 𝛼𝛼𝑆𝑆𝐿𝐿∗ and 𝛼𝛼𝑆𝑆𝑈𝑈∗ are the upper and lower Schapery bounds for the effective CTE, 

respectively, and 𝐾𝐾𝑈𝑈 and 𝐾𝐾𝐿𝐿 refer to the upper and lower bounds for the composite bulk 

modulus, respectively. Moreover, the second-order Schapery effective CTE bounds rely 
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on estimations of the effective bulk modulus. In these cases, a better prediction of the 

bulk modulus results in tighter bounds for the effective composite CTE. However, when 

disregarding geometric effects, the tightest bounds are created when using the bulk 

modulus bounds calculated by Hashin and Shtrikman as provided in Eq. (2.12). 

2.3.6 Self-Consistent Approximation 

In addition to the self-consistent scheme for effective elastic properties, 

Budiansky [15] in 1970 provided a self-consistent equivalent medium approach to the 

effective thermal expansion. For a composite mixture of N isotropic phases, the effective 

thermal expansion, 𝛼𝛼𝑆𝑆𝑆𝑆∗  is given by   

 𝛼𝛼𝑆𝑆𝑆𝑆∗ = �𝜙𝜙𝑖𝑖
𝛼𝛼𝑖𝑖𝐾𝐾𝑖𝑖
𝐾𝐾∗ �1 − 𝑎𝑎 + 𝑎𝑎 �

𝐾𝐾𝑖𝑖
𝐾𝐾∗��

−1𝑁𝑁

𝑖𝑖=1

 (2.29) 

where 𝐾𝐾∗ is the effective bulk modulus of the mixture and a is defined as 

 𝑎𝑎 =
1
3
�

1 + 𝜈𝜈∗

1 − 𝜈𝜈∗
� (2.30) 

with the effective Poisson’s ratio 𝜈𝜈∗ defined with the well-known relation 

 𝜈𝜈∗ =
3𝐾𝐾∗ − 2𝐺𝐺∗

6𝐾𝐾∗ + 2𝐺𝐺∗
. (2.31) 

Here, 𝐺𝐺∗ is the effective shear modulus of the composite. In this formulation, 𝐾𝐾∗ and 𝐺𝐺∗ 

are calculated solving Eqs. (2.18) and (2.19).   



www.manaraa.com

 
 

17 
 

 Theoretical Bounds on Thermal Conductivity 

2.4.1 Thermal Conductivity 

Thermal conductivity is the ability of a material to transfer heat. Materials for 

thermal applications are selected based on their thermal conductivity. For instance, a heat 

sink for a computer processing unit (CPU) is designed to extract heat from the CPU to 

prevent overheating of the silicone transistors. Using materials that can absorb heat 

readily, such as copper and aluminum, results in an optimal design. On the other hand, 

TPSs for aerospace vehicles rely on the ability to resist heat flow through the thickness 

and transverse directions of the structure. Here, materials with low thermal conductivity 

are chosen (e.g., ceramics). The thermal conductivity 𝑘𝑘 is used in the definition of 

Fourier’s law  

 𝑞𝑞 = −𝑘𝑘∇𝑇𝑇, (2.32) 

where 𝑞𝑞 is the heat flux density vector, ∇𝑇𝑇 is the temperature gradient and 𝑘𝑘 is the 

second-order thermal conductivity tensor.   

2.4.2 Analytical and Semi-Analytical Approaches 

For the work presented here, the thermal conductivity is of particular interest as 

this property has significant impact on the coupled thermo-mechanical response of 

systems. In the following sections, a few models of the effective thermal conductivity of 

composite materials will be provided. 

2.4.3 Mixture Rules of Wiener 

As with other effective properties of composites, the ROM is used as a first-order 

approximation. However, in the case of thermal conductivity, credit is given to Wiener 
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[16] for the volume-weighted arithmetic and harmonic mean as opposed to the analogous 

elasticity ROMs [3, 4]. As with the Voigt and Reuss bounds for the effective elastic 

properties, the Wiener ROM bounds for the effective thermal conductivity are valid for 

arbitrary microstructures. The upper, 𝑘𝑘𝑊𝑊𝑈𝑈∗, and lower, 𝑘𝑘𝑊𝑊𝐿𝐿∗, Wiener bounds for a two-phase 

mixture are  

 𝑘𝑘𝑊𝑊𝑈𝑈∗ = 〈𝑘𝑘〉 = 𝜙𝜙1𝑘𝑘1 + 𝜙𝜙2𝑘𝑘2 (2.33) 

and  

 𝑘𝑘𝑊𝑊𝐿𝐿∗ =
𝑘𝑘1𝑘𝑘2

𝜙𝜙1𝑘𝑘2 + 𝜙𝜙2𝑘𝑘1
, (2.34) 

where 𝑘𝑘𝑖𝑖 is the thermal conductivity of the i-th phase.   

2.4.4 Bruggeman Model 

Self-consistent schemes or effective medium approximations were first proposed 

by Bruggeman [17] and Landauer [18] in 1935 and 1952, respectively, and later 

generalized into the self-consistent framework by Hashin [19] in 1968. Bruggeman 

developed a model based on the implicit relationship between the thermal conductivities 

of the composite, the reinforcement and matrix. The theory is based on the self-consistent 

concept that the inclusion material can be regarded as being surrounded by an equivalent 

homogenous material whose properties are unknown and need to be determined. For a 

mixture of thermally isotropic materials (spherical inclusions) with interaction between 

particles, the approximation is given as  

 𝜙𝜙1 �
𝑘𝑘1 − 𝑘𝑘𝑆𝑆𝑆𝑆∗

𝑘𝑘1 + 2𝑘𝑘𝑆𝑆𝑆𝑆∗
� + 𝜙𝜙2 �

𝑘𝑘2 − 𝑘𝑘𝑆𝑆𝑆𝑆∗

𝑘𝑘2 + 2𝑘𝑘𝑆𝑆𝑆𝑆∗
� = 0, (2.35) 
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where 𝑘𝑘𝑆𝑆𝑆𝑆∗  is the self-consistent effective conductivity approximation.  

2.4.5 Hashin and Shtrikman Model 

Using variational methods on the principles of magnetic energy, Hashin and 

Shtrikman [20] developed rigorous bounds for the effective magnetic permeability. The 

analysis does not take into consideration geometry, only information on phase material 

and volume fraction. Additionally, the derivation considers the phase materials to be 

macroscopically homogenous and isotropic. Moreover, because of the mathematical 

analogy, the results can also be translated to the dielectric constant, electrical and thermal 

conductivity, and diffusivity for such systems. The H-S thermal conductivity bounds 

where 𝑘𝑘𝐻𝐻𝐻𝐻𝐿𝐿∗ ≤ 𝑘𝑘∗ < 𝑘𝑘𝐻𝐻𝐻𝐻𝑈𝑈∗ for a multi-phase composite where 𝑘𝑘1 and 𝑘𝑘𝑚𝑚 are the smallest 

and largest values of 𝑘𝑘 in the composite are given as: 

 

𝑘𝑘𝐻𝐻𝐻𝐻𝐿𝐿∗ = 𝑘𝑘1 +
𝐴𝐴1

(1 − 𝛼𝛼1𝐴𝐴1) 

𝑘𝑘𝐻𝐻𝐻𝐻𝑈𝑈∗ = 𝑘𝑘𝑚𝑚 +
𝐴𝐴𝑚𝑚

(1 − 𝛼𝛼𝑚𝑚𝐴𝐴𝑚𝑚) 

(2.36) 

where 

 𝛼𝛼1 = (3𝑘𝑘1)−1        𝛼𝛼𝑚𝑚 = (3𝑘𝑘𝑚𝑚)−1 (2.37) 

and 

 𝐴𝐴1 = �
𝜙𝜙𝑖𝑖

1
𝑘𝑘𝑖𝑖 − 𝑘𝑘1

+ 𝛼𝛼1

𝑚𝑚

𝑖𝑖=1

        𝐴𝐴𝑚𝑚 = �
𝜙𝜙𝑖𝑖

1
𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑚𝑚

+ 𝛼𝛼𝑚𝑚

𝑚𝑚−1

𝑖𝑖=1

 (2.38) 

In the case of a two-phase material with the assumption that 𝑘𝑘1 < 𝑘𝑘2, Eq. (2.36) can be 

expressed simply as: 
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 𝑘𝑘𝐻𝐻𝐻𝐻𝐿𝐿∗ = 𝑘𝑘1 +
𝜙𝜙2

1
𝑘𝑘2 − 𝑘𝑘1

+ 𝜙𝜙1
3𝑘𝑘1

 (2.39) 

and  

 𝑘𝑘𝐻𝐻𝐻𝐻𝑈𝑈∗ = 𝑘𝑘2 +
𝜙𝜙1

1
𝑘𝑘1 − 𝑘𝑘2

+ 𝜙𝜙2
3𝑘𝑘2

. (2.40) 

The results of Hashin and Shtrikman, Eqs. (2.39) and (2.40) provide the strictest 

analytical bounds on the effective thermal conductivity of statistically isotropic two-

phase composites without consideration of the microstructure.  

 Theoretical Bounds on Specific Heat Capacity 

2.5.1 Specific Heat Capacity 

Creating a temperature change in a material requires a physical amount of heat or 

thermal energy. The amount of heat required is dictated by the physical property of the 

material to absorb energy and is known as the heat capacity 𝐶𝐶. If a unit mass of material 

is considered, the specific heat (or specific heat capacity) 𝑐𝑐 is expressed as 

 𝑐𝑐 =
1
𝑚𝑚
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, (2.41) 

where 𝑚𝑚 is the mass, and 𝑄𝑄 and 𝑇𝑇 are the supplied heat and temperature, respectively. 

The heat capacity as derived from thermodynamic relations defines the heat capacity at 

constant volume 𝐶𝐶𝑉𝑉 and the heat capacity at constant pressure 𝐶𝐶𝑃𝑃. The two are connected 

through the following relationship [21]: 
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 𝐶𝐶𝑃𝑃 − 𝐶𝐶𝑉𝑉 = 𝑇𝑇 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉,𝑁𝑁

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑃𝑃,𝑁𝑁

, (2.42) 

where 𝑇𝑇 is the temperature, 𝑃𝑃 is the pressure, 𝑉𝑉 is the volume, and N is the number of 

particles. While the partial derivatives are taken at constant volume and particles, and 

constant pressure and particles. This can be rewritten to take the form [21] 

 𝐶𝐶𝑃𝑃 − 𝐶𝐶𝑉𝑉 = 𝑉𝑉𝑉𝑉
𝛼𝛼2

𝛽𝛽𝑇𝑇
, (2.43) 

where 𝛼𝛼 is the coefficient of thermal expansion and 𝛽𝛽𝑇𝑇 is the isothermal compressibility.     

2.5.2 Analytical and Semi-Analytical Approaches 

While a literature review of the prediction of effective composite material 

properties such as the elastic moduli, thermal conductivity and coefficient of thermal 

expansion has resulted in numerous analytical models, the same cannot be said for the 

specific heat capacity. To the best of the author’s knowledge, there is very little literature 

concerning analytical expressions for the effective specific heat of composites. Rigorous 

mathematical bounds were presented by Rosen and Hashin in 1970 for multiphase 

thermo-elastic composites. Sevostianov and Kachanov [22] discussed the relationship 

between the effective linear elastic and thermal properties of heterogeneous materials. 

However, the expressions of the effective coefficient of thermal expansion and specific 

heat capacity were limited to the case of a two-phase composite, which in turn is shown 

to result in the bounds of Rosen and Hashin.   

With few analytical expressions for the effective specific heat, research has turned 

to numerical approaches [23-27], similar to the work undertaken in the present study to 

solve the transient heat transfer problem. In the following sections, known models of the 

effective specific heat of heterogeneous materials will be provided.   
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2.5.3 Kopp’s Law 

As with other effective properties of composites, the ROM is used as a first-order 

approximation. As pointed out by Ochiai [28], the ROM is generally considered a starting 

point for predicting the effective specific heat. The ROM for specific heat at constant 

pressure is typically credited to Kopp [29] for his study of the boiling points of organic 

compounds. Kopp’s law states that the molecular heat capacity of a solid composite 

material is the sum of the heat capacities of each phase. Thus, Kopp’s approximation of 

the effective specific heat 𝑐𝑐𝑝𝑝,𝐾𝐾
∗  of an isotropic two-phase composite is:   

 𝑐𝑐𝑝𝑝,𝐾𝐾
∗ =

𝜙𝜙1𝜌𝜌1𝑐𝑐𝑝𝑝1 + 𝜙𝜙2𝜌𝜌2𝑐𝑐𝑝𝑝2

𝜌𝜌∗
, (2.44) 

where 𝜙𝜙𝑖𝑖, 𝑐𝑐𝑝𝑝𝑖𝑖  and 𝜌𝜌𝑖𝑖 are the volume fraction, specific heat and density of each phase, and 

𝜌𝜌∗ is the effective composite density defined as 

 𝜌𝜌∗ = 𝜙𝜙1𝜌𝜌1 + 𝜙𝜙2𝜌𝜌2. (2.45) 

2.5.4 Rosen and Hashin Model 

As stated by Rosen and Hashin [14], for a uniform temperature increase in a 

composite subjected to surface boundary conditions such as displacement or traction, 

there is no change in the average stress or strain, but local values may vary. This 

statement provides evidence that the effective specific heat of the composite is not the 

volume fraction weighted average of each phase-specific heat as provided in Eq. (2.44). 

Using the principles of thermodynamic energy balance, Rosen and Hashin found that 

there is a temperature-dependent correction to Kopp’s law on the prediction of the 

effective composite specific heat. The temperature-dependent Rosen-Hashin predictions 

for an isotropic two-phase composite is given by   
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 𝑐𝑐𝑝𝑝𝑅𝑅−𝑆𝑆
𝑈𝑈∗ = 〈𝑐𝑐𝑝𝑝〉 + 9𝑇𝑇0 �

𝛼𝛼2 − 𝛼𝛼1
1
𝐾𝐾1

− 1
𝐾𝐾2

�

2

�〈
1
𝐾𝐾
〉 −

1
𝐾𝐾𝐿𝐿∗

� (2.46) 

and  

 𝑐𝑐𝑝𝑝𝑅𝑅−𝑆𝑆
𝐿𝐿∗ = 〈𝑐𝑐𝑝𝑝〉 + 9𝑇𝑇0 �

𝛼𝛼2 − 𝛼𝛼1
1
𝐾𝐾1

− 1
𝐾𝐾2

�

2

�〈
1
𝐾𝐾
〉 −

1
𝐾𝐾𝑈𝑈∗�, (2.47) 

where 𝑇𝑇0 is the reference temperature in Kelvin, 𝐾𝐾𝑖𝑖 and 𝛼𝛼𝑖𝑖 are the bulk modulus and the 

coefficient of thermal expansion of the i-th phase, respectively, and 𝐾𝐾𝑈𝑈∗ and 𝐾𝐾𝐿𝐿∗ are the 

upper and lower effective bulk moduli predicted by Eq. (2.12). The specific heat at 

constant volume can be found through the following relation [21]: 

 𝑐𝑐𝑣𝑣∗ = 𝑐𝑐𝑝𝑝∗ +
1
𝜌𝜌∗
𝑪𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ 𝛼𝛼𝑖𝑖𝑖𝑖∗ 𝛼𝛼𝑘𝑘𝑘𝑘∗ 𝑇𝑇0 . (2.48) 

Here, 𝑪𝑪 is the fourth-order elastic moduli tensor, and 𝜌𝜌∗ and 𝛼𝛼∗ are the effective density 

and CTE. The upper and lower bounds can be found by replacing the appropriate bounds 

for the CTE and elasticity tensor.   

 Direct Numerical Methods 

While the analytical methods are based on rigorous mathematical and physical 

considerations, their application to the modeling of the effective properties of composite 

materials is somewhat limited due to the very restrictive assumptions introduced in the 

course of their derivations. Take, for example, a case when arbitrary geometry is used. 

Here, the majority of the models will not be useful in accounting for such influence. 

Moreover, consider the case when one, some, or all of the constituent materials do not 

exhibit linear-elastic behavior. One can also consider materials that exhibit anisotropy or 

material properties that are state dependent, such as the dependence of Young’s modulus 
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on strain rate, for example. In these cases, more and more interest has been focused on 

numerical methods to estimate such properties. Numerical models have the advantage of 

considering the effects of geometry, stress concentrations, non-linear behavior, etc. 

However, these advantages can be mitigated at the expense of being computationally 

expensive. The following sections will outline procedures for numerically estimating the 

effective macro- or continuum-level properties. 

2.6.1 Representative Volume Element 

Regardless of the numerical approach taken, the majority of methods depends on 

the definition of a representative geometry to perform the numerical simulation. Here, 

RVE is used to classify a sample of a composite or heterogeneous material that is typical 

of the entire material on average and contains a sufficient amount of inclusions such that 

the apparent properties are independent of the surface traction and displacement, as stated 

by Hill [30]. The RVE behaves in such a way that the response is identical to or 

representative of the material as a whole. The volume of this element Ω0 is divided up 

amongst the constituent materials as Ωi, where 𝑖𝑖 = 1 to the number of phase materials. 

With the increase in computing power at the desktop level, numerical techniques are 

becoming ever more popular to solve the field equations in the RVE; for this reason, the 

size of the RVE domain is important when considering numerical homogenization. Hill’s 

condition [30] has been widely accepted as a measure of determining the appropriate 

RVE size. In the case of elastic response, this condition states that the energy at the micro 

level must be equivalent to the effective energy for the homogenized material over the 

volume if uniform stress or strain exists on the RVE boundary.        

2.6.2 Image-Based Modeling 

Researchers have developed computational models and approaches capable of 

modeling the RVE or the entire macrostructure and incorporating details of the material 
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microstructure. One popular technique to obtain the material microstructure is via 

scanning electron microscope (SEM) images. Here, images are taken of portions of the 

material under consideration and then exported to create discretized finite element 

models (FEM). This method has been used to determine the effective elastic response 

[31, 32], elastic and thermoelastic properties [33, 34], thermal conductivity [35] and 

failure [36, 37], to name a few.  

2.6.3 Artificial Modeling 

Another widely used approach to define the RVE is to artificially model the 

microstructure with simplified geometric representations of the actual or expected 

microstructure. Here researchers have exploited the simplified microstructure by 

assuming reinforcement phases as basic shapes such as spheres, disks, cylinders, 

ellipsoids, etc., resulting in a less complex analysis. The distribution of the reinforcement 

phases of the artificial microstructure can be based on actual images of the material or 

merely on random or particular distribution functions with either a periodic or non-

periodic array. Ideally a researcher would base the decision on as much information on 

the microstructure that is known or anticipated during the manufacturing process. 

2.6.4 Numerical Homogenization: Background 

Regardless of the method used or the definition of the RVE, the aim of numerical 

homogenization is to determine the effective properties of heterogeneous materials when 

analytical models or experimental data are not valid or feasible. Numerical 

homogenization is carried out by volume averaging the response of each of the 

constituent materials to determine the effective material response. This technique 

assumes that the discretized material microstructure is adequately approximated. Some of 

the earliest numerical approximations were carried out using 2D finite difference 

schemes to determine the effective elastic properties of fiber-reinforced composites by 
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Adams and Doner [38, 39] in the late 1960s. However, with high computational power at 

the desktop level, researchers have the capability to approach the problem using various 

methods such as finite element [40-45], method of cells [46, 47] and Fourier transform-

based methods [48-51], to name a few. Moreover, the concepts are not limited to elastic 

properties. The idea has also been applied to predict other effective properties such as 

thermal conductivity [23, 52, 53], thermal expansion [25, 41, 52, 54] and specific heat 

[23, 25].  

2.6.5 Numerical Homogenization: Elasticity 

The elastic modulus of the RVE is estimated by applying a tensile load to the 

RVE and volume averaging the strain and stress throughout the RVE.  Thus, the effective 

elastic moduli tensor 𝑪𝑪∗ is determined as  

 𝑪𝑪∗ =
𝜎𝜎�𝑖𝑖𝑖𝑖
𝜖𝜖𝑖̅𝑖𝑖𝑖

 (2.49) 

where average stress, 𝜎𝜎�, and average strain, 𝜖𝜖,̅ are computed as  

 𝜎𝜎�𝑖𝑖𝑖𝑖 =
1
𝑉𝑉
�𝜎𝜎𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
𝑉𝑉

 (2.50) 

and 

 𝜖𝜖𝑖̅𝑖𝑖𝑖 =
1
𝑉𝑉
�𝜖𝜖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
𝑉𝑉

 (2.51) 

and 𝑉𝑉 is the volume of the RVE. The tensile load is applied via prescribed displacement 

and appropriate boundary conditions. In a discretized FEM, the average stress and strain, 

Eqs. (2.50) and (2.51), can be written as 
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 𝜎𝜎�𝑖𝑖𝑖𝑖 = �𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘Ω𝑘𝑘
𝑁𝑁

𝑘𝑘=1

, (2.52) 

 𝜖𝜖𝑖̅𝑖𝑖𝑖 = �𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘Ω𝑘𝑘
𝑁𝑁

𝑘𝑘=1

. (2.53) 

Here 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘 , 𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘  and Ωk denote the stress, strain and integration volume of the k-th element, 

respectively. Equations (2.49)-(2.53) can be applied to other material properties with 

substitution of the proper field equations. Specific details of each will be provided in the 

forthcoming sections. 

2.6.6 Numerical Homogenization: Thermal Conductivity  

The effective RVE thermal conductivity is assessed by applying a specified 

temperature gradient across two faces of the RVE while insulating the remaining faces 

and assuming a steady-state condition. The temperature gradients and heat fluxes are then 

volume averaged to determine the effective thermal conductivity 𝑘𝑘∗ as determined by 

 𝑘𝑘∗∇𝑇𝑇� = −𝑞𝑞� (2.54) 

where the average temperature gradient, ∇𝑇𝑇�, and average heat flux, 𝑞𝑞�, are calculated in a 

fashion similar to Eqs. (2.50)-(2.53). The temperature gradient is enforced using 

appropriate boundary conditions to create a difference across two of the RVE faces while 

maintaining equivalent temperature change across the remaining faces of the RVE. 
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2.6.7 Numerical Homogenization: Thermoelasticity  

The CTE of the RVE is estimated by applying a thermal load to the RVE and 

volume averaging the stress and strain throughout the domain.  Thus, assuming a linear 

CTE and zero strain at reference temperature 𝑇𝑇0, the effective CTE 𝛼𝛼∗ is determined as  

 𝜖𝜖𝑡̅𝑡ℎ = 𝛼𝛼∗(𝑇𝑇 − 𝑇𝑇0) (2.55) 

where the average thermal strain, 𝜖𝜖𝑡̅𝑡ℎ, is computed in a fashion similar to Eq. (2.51) or 

Eq. (2.53) with a specified temperature 𝑇𝑇 imposed on the domain. In addition to the 

previous description, the effective thermal expansion can also be calculated using a 

combined elastic and thermal analysis by evaluating the contributions to thermal and 

mechanical stress/strain separately.   

2.6.8 Numerical Homogenization: Specific Heat  

The effective RVE specific heat is determined by applying a uniform heat source 

to the body and assuming a transient condition. The temperature gradients and heat fluxes 

are then volume averaged to determine the effective specific heat 𝑐𝑐𝑝𝑝∗  given as 

 𝑄𝑄� = 𝐶𝐶𝑝𝑝∗ 𝜌̅𝜌
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
����

 (2.56) 

where the average heat body flux, 𝑄𝑄�, and average temperature change with respect to 

time, 𝑑𝑑𝑑𝑑���� 𝑑𝑑𝑑𝑑⁄ , can also be determined using appropriate variables and procedures 

previously described. The effective density, 𝜌̅𝜌 is calculated using the ROM given by Eq. 

(2.45). Additionally, the effective specific heat and thermal conductivity can be 

determined collectively in one model using a transient thermal analysis. Here, once the 

domain reaches a steady-state, the effective thermal conductivity can be evaluated. With 

this information, the effective specific heat can then be back calculated.   
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 Boundary Conditions 

With any numerical or analytical model, boundary and initial conditions must be 

specified. The initial conditions in most cases are fairly straight-forward: the system is 

typically taken at a zero state, e.g., a uniform temperature that results in zero initial strain, 

and zero heat transfer. The choice of boundary conditions can have a significant impact 

on the response of the model. Moreover, different choices in boundary conditions can 

lead to different results for the same model. Ideally the choice of boundary conditions 

will reflect the real-world conditions. However, this is not always practical or possible as 

many different types of boundary conditions can be present on the body or region of 

interest. The main goal when implementing boundary conditions is to, as closely as 

possible, model the behavior of the system in its natural setting while limiting the 

influence of nonphysical behavior on the system. In the case of an RVE, the goal is to 

model the representative volume in such a way that the response would mimic the 

response of the material as a whole. To achieve this goal, one of three types of boundary 

conditions is typically chosen: (1) Kinematic Uniform Boundary Conditions (KUBCs), 

(2) Static Uniform Boundary Conditions (SUBCs), and (3) Periodic Boundary Conditions 

(PBCs). In some cases, combinations of two or more of the boundary conditions, known 

as “mixed boundary conditions,” [55, 56] may be chosen when appropriate. Other types 

of RVE boundary conditions are also possible. The only general requirement in the 

formulation is that they should be consistent with the homogenization theorem(s) applied.   

2.7.1 Homogenous Boundary Conditions 

Of the three types of boundary conditions, KUBCs (Dirichlet) and SUBCs 

(Neumann) are lumped into what is referred to as homogenous boundary conditions 

(HBCs). According to Hill [30], an RVE is said to be well defined when the effective 

response using HBCs (KUBCs/SUBCs) coincides. In numerical models, HBCs offer the 

advantage of reduced computation time due to the reduced number of constraint 
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equations. This makes this class of boundary conditions useful for material models with a 

large number of finite elements and/or degrees of freedom (DOF). However, because 

HBCs simulate the entire macro structure with its phase materials (as opposed to PBCs, 

which simulate the entire macro structure with micro level periodically repeating cells), 

the convergence of effective properties becomes a function of the domain (RVE) size. 

Determination of the minimum size of the RVE has been studied in the works of such 

authors as Huet [57], Amieur et al. [58] and Huet [59]. The size of the RVE has been 

found to be a function of the behavior of the constituent materials, inclusion size, 

geometry effects, etc. The following sections will provide details of the development and 

construction of elastic, thermoelastic and thermal HBCs used in this work.   

2.7.1.1 Elastic Homogenous Boundary Conditions 

According to Aboudi [46] HBCs can be either kinematic or static. Kinematic 

uniform boundary conditions are defined as an imposed displacement 𝒖𝒖𝑖𝑖 at each point 𝒙𝒙𝑖𝑖 

on the boundary Γ such that 

 𝑢𝑢𝑖𝑖(Γ) = 𝝐𝝐0𝑥𝑥𝑖𝑖 . (2.57) 

Here 𝝐𝝐0 is a constant global strain tensor. Static uniform boundary conditions are defined 

as an imposed traction 𝒕𝒕𝑖𝑖 at each point 𝒙𝒙𝑖𝑖 on the boundary Γ such that 

 𝒕𝒕𝑖𝑖(Γ) = 𝝈𝝈0𝒏𝒏𝒊𝒊, (2.58) 

where 𝝈𝝈0 is a constant stress tensor and 𝒏𝒏𝑖𝑖 is the outward normal on Γ. In this work, the 

kinematic formulation has been adopted for models when homogenous boundary 

conditions are used.   
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Homogenous boundary conditions are implemented into FEMs by creating 

reference nodes and linking the DOF of each face to a reference node, similar to that of 

an earlier study by Kassem [60]. A total of six reference nodes are created with each 

constrained to nodal sets on each of the six cube faces. Each reference node is 

constrained to the corresponding cube face using the Abaqus command *TIE [61]. This 

formulation allows for the model to be subjected to either a tensile or compressive 

perturbation (uni-axial or multi-axial) or shear loading. A schematic of the reference 

nodes on an RVE is shown below in Fig. 2.1 with the reference point locations provided 

in Table 2-1 assuming a unit RVE.   

 
Figure 2.1. FEM HBC reference point definition. 

Table 2-1. HBC reference point locations. 

 

Tensile loads with HBCs are implemented by fixing reference points normal to the 

applied load and applying tensile perturbation to one or all of the remaining reference 

Face Coords. (x, y, z) Ref. Point
Left (0, y, z) RP-1
Right (1, y, z) RP-2

Bottom (x, 0, z) RP-3
Top (x, 1, z) RP-4

Rear (x, y, 0) RP-5
Front (x,  y, 1) RP-6
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points or surface traction to remaining faces. For example, consider a tensile perturbation 

in the 𝑥𝑥+ direction that leads to the conditions in Table 2-2. 

Table 2-2. Example of tensile perturbation boundary 
conditions.  

 

Here 𝑢𝑢𝑖𝑖0 is the applied displacement for the x, y and z directions. These boundary 

conditions are easily modified to accommodate loading in various directions and shear 

loading.   

2.7.1.2 Thermal Homogenous Boundary Conditions 

The concepts of the mechanical HBCs are extended to the thermal analysis with 

thermal uniform temperature gradient (UTG) defined as an imposed temperature 𝑻𝑻𝑖𝑖 at 

each point 𝒙𝒙𝑖𝑖 on the boundary Γ such that 

 𝑇𝑇𝑖𝑖(Γ) = ∇𝐓𝐓0𝑥𝑥𝑖𝑖 , (2.59) 

where ∇𝑻𝑻0 is an applied temperature gradient. Similarly, as in the mechanical case, the 

thermal uniform heat flux (UHF) as expressed as 

 𝑞𝑞𝑖𝑖(Γ) = 𝑸𝑸0𝒏𝒏𝑖𝑖. (2.60) 

Face Ref. Point u x u y u z

Left RP-1 0 free 0
Right RP-2 u 0

x free free
Bottom RP-3 free 0 free

Top RP-4 free u 0
y free

Rear RP-5 free free 0
Front RP-6 free free u 0

z
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Here 𝑞𝑞𝑖𝑖 is the microscopic heat flux, 𝑸𝑸0 is a constant heat flux vector and 𝒏𝒏𝑖𝑖 is the 

outward normal vector on Γ. For the extent of the work presented, HBCs are not used for 

thermal models unless noted otherwise. The benefits of these boundary conditions are not 

realized for the size of numerical models analyzed. 

2.7.1.3 Thermoelastic Homogenous Boundary Conditions 

Homogenous thermoelastic boundary conditions are applied in the same manner 

as the elastic HBCs in Section 2.7.1.1, but the global strain vector, 𝝐𝝐0, is specified as 

zero, and a uniform temperature is imposed on the RVE domain, resulting in thermal 

strains throughout the body. In situations where a non-uniform thermal load is desired, 

the thermal HBCs of Section 2.7.1.2 can also be incorporated into the thermomechanical 

analysis.  

2.7.1.4 Specific Heat Homogenous Boundary Conditions 

In this work, HBCs for determining the effective specific heat of a material are 

the same as the thermal HBCs of Section 2.7.1.2.  

2.7.2 Periodic Boundary Conditions 

While PBCs can be computationally more expensive per iteration than HBCs, 

they do offer some advantages, such as size independence and ability to evaluate the 

macro-level effective properties. The dependence off cell size on the convergence of 

effective properties can be seen graphically in Fig. 2.2. The following section will 

provide details on the development and implementation of PBCs into FEM.  
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Figure 2.2. Convergence of effective material properties [62]. 

2.7.2.1 Elastic Periodic Boundary Conditions 

As noted by Kassem [60], consider a structure assumed to be periodic consisting 

of a periodic array of repeating cells subjected to macro-level strain tensor 𝝐𝝐0. The 

displacement for the structure 𝑢𝑢𝑖𝑖  is expressed as 

 𝑢𝑢𝑖𝑖 = 𝝐𝝐0𝑥𝑥𝑖𝑖 + 𝑢𝑢𝑖𝑖∗. (2.61) 

Here 𝑢𝑢𝑖𝑖 and 𝑥𝑥𝑖𝑖 are the displacement and position vector of the i-th node. The last term on 

the right side, 𝑢𝑢𝑖𝑖∗, represents a periodic function that is a modification of the linear 

displacement field due to the material heterogeneity. Moreover, the displacement of the 

structure can be thought of as the contributions from the slowly varying macroscopic 

fields and variations in the microscopic response. Because the structure represents a 

continuous body of material, there are two conditions that must be satisfied by the RVE. 

First, the displacements must be continuous along the boundary of the RVE. In a physical 

sense, this condition requires that, when assembled after deformation, gaps or penetration 

between neighboring RVEs do not exist. This requirement is used to eliminate the 
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periodic displacement function 𝑢𝑢𝑖𝑖∗, which is typically not known. The elimination can be 

derived by considering the displacement of two opposite faces 

 𝑢𝑢𝑖𝑖𝑘𝑘
+

= 𝝐𝝐0𝑥𝑥𝑖𝑖𝑘𝑘
+

+ 𝑢𝑢𝑖𝑖∗, (2.62) 

 𝑢𝑢𝑖𝑖𝑘𝑘
−

= 𝝐𝝐0𝑥𝑥𝑖𝑖𝑘𝑘
−

+ 𝑢𝑢𝑖𝑖∗. (2.63) 

Here the 𝑘𝑘+ and 𝑘𝑘− superscripts denote parallel and opposite faces (node pairs in context 

of finite element analysis (FEA)) with subscript i vector components. Because the 

periodic displacement function is common between the two faces, the difference of Eqs. 

(2.62) and (2.63) results in the following: 

 𝑢𝑢𝑖𝑖𝑘𝑘
+
− 𝑢𝑢𝑖𝑖𝑘𝑘

−
= 𝝐𝝐0�𝑥𝑥𝑖𝑖𝑘𝑘

+
− 𝑥𝑥𝑖𝑖𝑘𝑘

−
� = 𝝐𝝐0Δ𝑥𝑥𝑖𝑖𝑘𝑘 (2.64) 

Additionally, because 𝑥𝑥𝑖𝑖𝑘𝑘
+

and 𝑥𝑥𝑖𝑖𝑘𝑘
−

are constants for each pair of nodes and the global 

strain vector 𝝐𝝐0 is defined, the right-hand side becomes a constant. Thus, implementation 

of elastic PBCs into FEMs is simplified by constructing a series of constraint equations 

for each node pair and their respective components. This is realized using the commercial 

FEA code Abaqus, with the input file flag *EQUATION and correct specification of the 

respective node pairs. The global strain vector is applied to a so-called dummy or 

reference node located outside of the geometric domain. A 2D representation of this 

effect subjected to the tensile perturbation is presented graphically in Fig. 2.3.  
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Figure 2.3. 2D periodic boundary condition example. 

The second condition requires that the surface tractions on the RVE surface be symmetric 

between opposite faces, that is, 

 𝑡𝑡(𝑥𝑥𝑖𝑖+) − 𝑡𝑡(𝑥𝑥𝑖𝑖−) = 0. (2.65) 

This condition implies that, when the cells are assembled, the traction distribution along 

the boundaries will also be continuous.  

2.7.2.2 Thermal Periodic Boundary Conditions 

As mentioned above, for the extent of this work, PBCs are used when evaluating 

thermal models. Considering the same array of repeating cells’ periodic structures 

mentioned previously, the temperature of the structure 𝑇𝑇𝑖𝑖 subjected to a macro-level 

temperature gradient ∇𝑻𝑻0 is expressed as   

 𝑇𝑇𝑖𝑖 = ∇𝑻𝑻0𝑥𝑥𝑖𝑖 + 𝑇𝑇𝑖𝑖∗. (2.66) 
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Here, 𝑇𝑇𝑖𝑖 and 𝑥𝑥𝑖𝑖 are the nodal temperature and position vector of the i-th node, while 𝑇𝑇𝑖𝑖∗ is 

a periodic function representing a modification to the temperature field. Following the 

same procedure as in Section 2.7.2.1, the periodic function 𝑇𝑇𝑖𝑖∗ can be eliminated, 

resulting in the following condition between parallel opposing faces: 

 𝑇𝑇𝑖𝑖𝑘𝑘
+
− 𝑇𝑇𝑖𝑖𝑘𝑘

−
= ∇𝑻𝑻0�𝑥𝑥𝑖𝑖𝑘𝑘

+
− 𝑥𝑥𝑖𝑖𝑘𝑘

−
� = ∇𝑻𝑻0Δ𝑥𝑥𝑖𝑖𝑘𝑘 (2.67) 

Once again, due to 𝑥𝑥𝑖𝑖𝑘𝑘
+

and 𝑥𝑥𝑖𝑖𝑘𝑘
−

being constant for each pair of nodes and a specified 

global temperature gradient vector ∇𝑻𝑻0 applied, the right-hand side becomes a constant. 

Additionally, when the collection of RVEs is assembled heat flux compatibility must also 

be satisfied: 

 𝑞𝑞(𝑥𝑥𝑖𝑖+) + 𝑞𝑞(𝑥𝑥𝑖𝑖−) = 0. (2.68) 

This condition implies that, when the cells are assembled, the heat flux along the 

boundaries will also be continuous and conserved. Thermal PBCs are implemented into 

the chosen FEA code using the same procedure used in the case of elastic PBCs.  

2.7.2.3 Thermoelastic Periodic Boundary Conditions 

Thermoelastic PBCs are formulated in a similar manner as the elastic boundary 

conditions in Section 2.7.2.1 except the global strain vector, 𝝐𝝐0, is taken as zero. This 

modification, along with a prescribed uniform temperature, forces an equivalent response 

for each face or pairs of nodes of the RVE, resulting in thermal strain within the body. In 

the case when a non-uniform temperature is prescribed, the thermal PBCs of Section 

2.7.2.2 can also be incorporated into the thermoelastic analysis to evaluate the effective 

thermomechanical response when subjected to spatially dependent thermal loads.   
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2.7.2.4 Specific Heat Periodic Boundary Conditions 

In this work, PBCs for determining the effective specific heat of a material are the 

same as those used for thermal PBCs in Section 2.7.2.2. 
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CHAPTER 3  

 MODELING OF GRADED MICROSTRUCTURES 

 Functionally Graded Materials 

Functionally graded materials are heterogeneous composite materials consisting 

of two or more distinct phases characterized by continuously varying material properties 

along at least one spatial direction (typically the thickness). They were first 

conceptualized by a group of Japanese material scientists in the early 1980s while 

attempting to find thermal protection materials capable of withstanding a 2000 K surface 

temperature with a 1000 K gradient through a 10 mm thick section [63]. To accomplish 

this, they employed the notion of gradually transitioning from one material to another. 

This gradual variation or spatial variation (i.e., grading) is accomplished by continuously 

varying the volume content of each of the constituents in space. Grading provides design 

engineers the opportunity to create structures that possess material properties and multi-

functionality not found in classical materials and conventional engineering composites.   

The most appealing aspect of FGMs is the ability to tailor material properties to 

specific demands. Because of this attribute, FGMs have been gaining substantial traction 

in the automotive and aerospace industries due to their unique ability to tailor 

thermomechanical properties and performance, particularly for high-temperature 

environments. Such practical applications are disc brake rotors for automobiles, where a 

material with high toughness, light weight, excellent thermal properties and hardness is 

desired. In the aerospace industry, FGMs show promise as TPSs, TBCs, engine 

components and structural members [64], where tailoring of mechanical and thermal 

properties can yield enhancement of the thermomechanical structural response.   
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 Functionally Graded Material Modeling 

One of the most appealing and predominant characteristics of FGMs is the ability 

to tailor material properties or behavior with the end goal of optimizing and/or producing 

a desired system response. Thus, the anticipated loading and operating environment seen 

by the structure will strongly influence the types of materials used and the manner in 

which they are varied. For the extent to this work, FGMs are mathematically modeled as 

continuously variable composition composites. For a 1D graded two-phase material, the 

reinforcement through-thickness distribution, 𝑣𝑣2, can be described by the power law as  

 𝑣𝑣2(𝑧𝑧) = 𝜂𝜂𝑧𝑧 �
𝑧𝑧
ℎ
�
𝑛𝑛𝑧𝑧

, (3.1) 

where 𝑧𝑧 and ℎ are the thickness coordinate and total thickness, and 𝜂𝜂𝑧𝑧 and 𝑛𝑛𝑧𝑧 are 

parameters controlling the maximum phase-one material (e.g., ceramic in the metal-

ceramic composite) content and the grading profile in the thickness direction, 

respectively. In the case of 2D graded materials, the through-thickness and in-plane 

distribution can be defined by the following:  

 𝑣𝑣2(𝑥𝑥, 𝑧𝑧) = 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 �𝜂𝜂𝑥𝑥 �
𝑥𝑥
𝑙𝑙
�
𝑛𝑛𝑥𝑥

+ 𝜂𝜂𝑧𝑧 �
𝑧𝑧
ℎ
�
𝑛𝑛𝑧𝑧
�.  (3.2) 

Here, 𝑥𝑥 and 𝐿𝐿 are the longitudinal axis coordinate and total panel length, and 𝜂𝜂𝑥𝑥 and 𝑛𝑛𝑥𝑥 

are parameters controlling the phase-one material (e.g. ceramic in the metal-ceramic 

composite) content and the grading profile in the longitudinal direction, respectively. 

While, 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 is a parameter controlling the maximum overall inclusion volume fraction. 

Additionally, for all composite material systems, the following condition must also be 

met: 
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 �𝑣𝑣𝑖𝑖

𝑁𝑁

𝑖𝑖=1

= 1.  (3.3) 

 Artificial Representative Volume Elment Generation 

This section presents the techniques and algorithms developed and/or adopted in 

this study to model RVEs for fixed volume fraction and graded composite 

microstructures. These two-phase material models consist of simplified geometry (disks 

and spheres) representing both 2D and 3D models.  

The RVE of two-phase fixed volume fraction composites used throughout this 

work is taken as a cube or square of unit length 𝐿𝐿 = 1 with monodispersed and 

polydispersed spherical or disk particles to model the inclusion material. Furthermore, 

both partial and whole inclusions are used with periodic and non-periodic boundary 

conditions with a thorough comparison of both presented in this work. Cubic geometry is 

often chosen when investigating the effective mechanical properties of composites due to 

the ease of model creation [44, 45, 51]. The goal of this work is to develop and 

implement algorithms capable of generating artificial material microstructures with the 

highest possible inclusion volume fraction at the lowest computational cost. In this case, 

minimizing the amount of time to generate microstructures is crucial as a large number of 

models can be examined depending on the type of analysis. Furthermore, the generated 

RVEs must satisfy displacement and traction continuity requirements and be statistically 

isotropic, all of which are explained and investigated in the following sections. To 

generate the artificial microstructures needed for numerical models, two types of methods 

are used. For inclusion volume fractions below the jamming limit, which is calculated by 

Torquato [65] as 0.55 and 0.38 for randomly close packed disks and spheres using PBCs 

(closer to 0.48 and 0.30 for hard wall boundary conditions), a Random Sequential 

Adsorption (RSA) [66] algorithm is adopted. Here, particles are given random 
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coordinates and accepted if a minimum distance exists between all other particles 

previously accepted. The algorithm is completed when the number of particles in the 

system is equivalent to that desired. Moreover, because the random packings are to be 

eventually implemented into an FEM, a clearance distance is also specified to ensure that 

poor elements are not formed between particles. For volume fractions up to 91% and 

61% for disks and spheres, respectively, an event driven molecular dynamics (EDMD) 

algorithm is used. The EDMD routine is inspired by the algorithm proposed by 

Lubachevsky and Stillinger [67] and implemented for use in micromechanics by 

Ghossein [68]. The algorithm in this work is modified by exploiting the RSA algorithm 

to generate an initial packing fraction and distribution with an initial particle radius. Each 

particle is then given an initial velocity whose components are independently distributed 

at random between -1 and +1. The algorithm begins by computing the minimum time for 

either a binary collision between particles or, in the case of hard wall boundary 

conditions (non-periodic), a binary collision and particle collision with a cell face. Next, 

the radii of the spheres/disks are increased according to a user-defined growth rate, 

uniform for monodispersed and non-uniform for polydispersed systems. Lastly, the 

particle velocities are updated assuming purely elastic collisions with increasing energy 

due to the increasing radius. In the case of periodic boundary conditions mirrored images 

are created on opposing faces when a particle crosses a cell face. For hard wall boundary 

conditions, the particle’s velocity is conserved with the perpendicular impact direction 

being reversed. The EDMD algorithm with hard wall boundary conditions has produced 

whole monosized sphere arrangements up to 63.3%, approaching the well-accepted value 

of 64% for random close packing [69]. Meanwhile, the algorithm with periodic boundary 

conditions (monosized periodic trimmed inclusions) has approached the theoretical 

maximum packing volume fraction of 74.05% [70] for spherical particles. However, it is 

worth noting that, at volume fractions above 60%, the packing arrangement tends to 

deviate from a random arrangement and take on regular arrangements such as cubic, face-
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centered cubic and hexagonal close pack. To decrease the amount of computation time, 

the EDMD program is coded in parallel by discretizing the domain into grids according 

to the suggestion of Donev [71]. Here each processor is given a grid to compute binary 

collisions and wall impacts of the particles in its respective grid. A single processor then 

computes the collision times between particles close to grid boundaries. Parallelization of 

the code greatly reduces the amount of computational time needed to analyze higher 

packing fractions. All of the aforementioned algorithms were implemented by the author 

in the FORTRAN programming language. Once the packing configuration is completed, 

a Python script is used to interact with Abaqus [61], the commercial FEA code chosen for 

this work. Here, generation of the geometry and definition of material properties, 

boundary conditions, etc., are fully automated within the Abaqus Python scripting 

interface to streamline the modeling process.   
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CHAPTER 4  

 EFFECTIVE MATERIAL PROPERTIES OF GRADED COMPOSITES 

Regardless of the intended application, the determination of the effective material 

response of FGMs is vital to their integration into mainstream usage. Thus, the purpose of 

this chapter is determine the effective properties of graded heterogeneous composites. 

This is achieved by first testing the hypothesis of using classical homogenization 

techniques developed for traditional composite materials on variable composition 

composites. This hypothesis is analyzed by comparing the effective properties of graded 

microstructures evaluated by analytical approximations and bounds to that obtained by 

numerical by FEA of RVEs.  

 Definition of RVE 

An RVE for a composite system with a fixed volume fraction (macroscopically 

homogeneous) is typically well defined, while RVEs for variable-phase volume fraction 

composites (i.e., FGMs) are not as distinct or understood.  

Nevertheless, a plethora of micromechanical models developed to describe the 

behavior of macroscopically homogeneous composites has been used to characterize the 

thermoelastic and thermal response of graded materials and structures. For instance, the 

straightforward ROM models [3, 4] have been used to describe the thermoelastic 

response of FGM-based thermal barriers and coatings by Lee and Erdogan [72] as well as 

Shaw [73] and Williamson et al. [74], to name a few. Higher-order micromechanical 

models such as the Mori-Tanaka and self-consistent scheme have been used to estimate 

the effective elastic response of graded materials [64, 75, 76]. Furthermore, various 

models to predict the effective CTE [11, 13, 14, 77], thermal conductivity [17, 19, 20, 78] 

and specific heat [14, 29] have been used in numerous works. Assessments encompassing 

various homogenization methods and applications applied to FGMs can be found in the 

reviews by Jha et al. [79], Birman and Byrd [80] and Markworth [81]. 
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The motivation for the following sections is to determine a suitable choice of RVE for 

the determination of effective material properties of two-phase metal-ceramic FGMs. 

Particular attention will be paid to materials suitable for hypersonic structural 

applications, such as Titanium-based composites, due to their ability to retain high 

stiffness and strength at elevated temperatures.     

 Piecewise Layered RVE 

In a fashion similar to that described in the literature [82], RVEs are generated by 

considering regions that have a uniform-to-slow variation in material composition (i.e., 

constant volume fraction), as shown in Fig. 4.1. This approach leads to statistically 

homogenous piece-wise RVEs of the graded microstructure that neglect 

interactions/influence from neighboring cells, creating a so-called Local Representative 

Volume Element (LRVE). Although this approach neglects neighboring interactions, it 

does have the added convenience that the effective material properties of the composite 

are assumed to be independent from the grading of the material. Thus, the effective 

material properties need only be evaluated once for each volume fraction.   

 
Figure 4.1. Layered RVE model. 
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4.2.1 Piecewise Layered RVE: Model Generation 

The layered FGM model is constructed by first defining the material variation 

using the desired grading parameters along with either Eq. (3.1) or (3.2) and defining a 

specific number of volume fractions to model. Next, a volume fraction threshold is 

defined, which here is referred to as a transition zone, to switch the material phases 

(matrix becomes reinforcement and vice versa) when the reinforcement volume fraction 

exceeds this value. Swapping of the constituent phase materials is done to accommodate 

volume fractions that exceed the maximum permissible packing fraction. Finally, RVEs 

(either periodic or non-periodic) are created and the effective or overall composite 

properties determined using numerical homogenization techniques mentioned in Section 

2.6. To account for variations in geometry, the effective material properties are averaged 

over no less than five random models. As mentioned previously, this procedure leads to 

homogenous piecewise RVEs that neglect the influence of neighboring cells and the 

profile in the material variation. A simplified graphical representation of the layered 

model approach is provided below in Fig. 4.2.   

 
Figure 4.2. Graphical representation of the layered approach. 
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 Continuous FGM RVE 

In the context of FGMs, when applying the above methods (analytical and 

numerical), it is assumed that in regions where variation in phase volume fraction is 

constant or slowly varying an RVE exists. Thus, this RVE represents a material averaged 

response limited only to the region of interest. This approach is undoubtedly popular due 

to the fact that the response of the graded material can be obtained from layers of 

homogenous models, with material properties estimated in terms of local volume 

fractions while neglecting interactions of neighboring layers and material gradients. 

However, such methods raise concerns when the interactions between multiple layers 

cannot be neglected, particularly when there is a steep variation in material composition 

along the grading direction, as suggested by Anthoine [83]. Here, modeling of the 

complete variation in microstructure may influence the surrounding layers due to the 

particle interactions at the micro level taking place due to the varying material 

composition. Moreover, such an approach becomes even more troublesome when 

evaluating regions in the material when differentiation between the matrix and 

reinforcement phases is not well defined. To evaluate the effect these claims, artificial 

FGM microstructures are created and evaluated using FEA.  

A similar modeling approach was taken by Reiter and Dvorak [84]. In their work, 

a carbon/silicone-carbide (C/SiC) linearly graded microstructure using a hexagonal-

shaped reinforcement phase was homogenized using FEA with the resulting elastic 

response compared to the analytical Mori-Tanaka bounds [85] and self-consistent 

approximation [7, 8] to determine the legitimacy of using traditional micromechanical 

models on graded microstructures. Their models were later extended to evaluate the 

thermal and thermomechanical response and to assess the rationale of using classical 

analytical approximations to determine the effective response of the graded structure 

[86]. The findings of this work for the elastic, thermoelastic and thermal response 

indicate that the micromechanical models, originally developed for statistically 
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homogenous composites, may be applied to graded composites subjected to uniform and 

non-uniform loads with a reasonable degree of confidence. Furthermore, these 

conclusions also imply that the linearly graded C/SiC microstructure has little influence 

on the homogenization of the effective material response. Additionally, Grujicic and 

Zhang [87] performed similar work using the Voronoi cell method implemented into 

commercial FEA code on Ni/MgO and Ni3Al/TiC systems with non-linear material 

variation. The resulting material properties were found to be in good agreement with 

experimental values and compared reasonably well with the self-consistent 

approximation [7, 8], further reinforcing the notion of using classical micromechanical 

models for graded composites.     

The contribution of this work is the creation of high-resolution models utilizing 

simplified geometries to evaluate the influence of the graded microstructure on the 

effective homogenized material properties. This is accomplished by investigating varying 

degrees of material variation, such as fast, slow and uniform changes. Furthermore, in 

addition to the elastic and thermo-elastic properties, the effective properties will also 

include effective thermal conductivity and specific heat.  

4.3.1 Continuous FGM RVE: Model Generation 

The continuous FGM model is created in a fashion similar to the layered model 

outlined in Section 4.2.1. However, the influence of material variation and response and 

interaction of neighboring cells is taken into account by modeling the complete material 

variation. This is accomplished by defining a material distribution function and 

discretizing the geometry along the grading direction/s section into i layers in the case of 

1D grading or i and j sections (vertical and transverse sections) for 2D grading. This same 

principle can also be extended to the case of 3D material grading. Each of these layers 

and sections is packed to the volume fraction according to Eq. (3.1) or (3.2). For cases 

when a continuous material variation is desired, a random distribution is given along the 
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boundaries of each section to attempt to mimic the theoretical continuous distribution 

function. Using sophisticated in-house-developed packing algorithms described in 

Section 3.3, complex microstructures with high-packing fractions can be produced to 

permit the study of transition zone locations and high-percolation composites. After 

model generation, FEA with appropriate boundary conditions is employed to homogenize 

the field response of interest for each section and layer. A low-resolution example of the 

entire process for a 1D graded plate is illustrated in Fig. 4.3. Comparable to the layered 

model case, effective material properties are averaged over no less than five random 

models.      

 
Figure 4.3. Graphical representation of the layered approach. 

 Effective Properties: Layered vs. Continuous Models 

4.4.1 One-Dimensional Material Variation, 2D Geometry 

This section provides a detailed comparison of the apparent properties of FGMs 

derived using homogenization techniques originally developed for traditional fixed-
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volume fraction composites to the numerical values obtained by the Layered FGM RVE 

and Continuous FGM RVE modeling approaches described above. The results of this 

study will be used as guidance for determining suitable and efficient methods for 

acquiring the effective properties of graded composites and structures.  

The influence of material variation and interaction with neighboring cell response 

is evaluated for a titanium and titanium Diboride (Ti/TiB2) graded metal-ceramic system 

(through thickness only). This Ti/TiB2 system can be assumed to be a composite with 

particulate reinforcement based on SEM images of a fabricated graded material system 

courtesy of Ma et al. [88]. These samples were constructed using powder metallurgy of 

Ti and TiB2 powders as shown in Fig. 4.4.  

 
Figure 4.4. (a) Five-layer metal-ceramic Ti-TiB2 FGM (b) Ti-TiB2 microstructure: SEM image 

between layers 4 and 5 [88]. 

In the scope of this work, the reinforcement phase is modeled as simplified 

geometry (e.g., disks and spheres for 2D and 3D analysis). Utilizing Eq. (3.1), three 

material variations have been studied to determine the influence of the microstructure 

grading on the effective material properties. Setting the maximum ceramic volume 

fraction content to 1 (𝛾𝛾 = 1), linear (𝑛𝑛 = 1), quadratic (𝑛𝑛 = 2) and square root (𝑛𝑛 = 0.5) 

functions, representing a gradual, slow and rapid variation in ceramic volume fraction, 

respectively, have been considered as shown in Fig. 4.5. The artificial microstructure is 

generated by discretizing a 5 mm section into 21 distinct layers, resulting in a volume 
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fraction resolution of 0.05/layer. Each layer is then packed to the desired volume fraction 

using the previously mentioned packing methods (RSA and EDMD) using disks with a 

radius of 0.005 𝑚𝑚𝑚𝑚 (5 𝜇𝜇𝜇𝜇), providing an RVE characteristic length to inclusion radius 

of 1000. Upon the completion of all segments, a final distribution is given to the FGM 

along the boundaries of each division to produce as close to a continuous material 

variation as possible. For both the Layered and Continuous RVE models, constituent 

material phases are swapped when the reinforcement-phase volume content exceeds 60% 

(transition zone). A sample of the artificially generated geometries used for the numerical 

computations is provided in Fig. 4.6. For quick reference, the constituent material 

properties at 20 and 500 °C are provided in Table 4-1, while the complete temperature-

dependent variations are provided in Figs. 4.7-4.9.  

 
Figure 4.5. Ceramic volume fraction distribution. 
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             (a)                (b) (c) 

 
Figure 4.6. Artificially generated continuous FGM RVE microstructures, (a) n=1, (b) n=2, and 

(c) n=0.5. 

Table 4-1. Material properties of Ti-6Al-4V [89] and TiB2 
[90, 91] at 20/500 C. 

 

 
Figure 4.7. Temperature-dependent elastic modulus and Poisson’s ratio of Ti-6Al-4V [89] and 

TiB2 [90, 91]. 

E (GPa) ν α (μm/μm-K) k (W/m-K) Cp (J/kg-K)
Ti-6Al-4V 106.2/79.0 0.298/0.314 8.8/10.1 6.1/14.3 535.3/651.5

TiB2 495.4/477.2 0.100/0.102 7.4/8.0 95.8/81.4 622.7/1051.8
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Figure 4.8. Temperature-dependent coefficient of thermal expansion Ti-6Al-4V [89] and TiB2 

[90, 91]. 

 
Figure 4.9. Temperature-dependent thermal conductivity and specific heat of Ti-6Al-4V [89] and 

TiB2 [90, 91]. 

Randomly generated geometry is then imported into the commercial FEA code 

Abaqus [61], leveraging the Abaqus/Python scripting interface. The model-generation 

process has been automated to reduce user interaction. For the LRVE approach, PBCs are 

implemented on all sides of the LRVE. In the Continuous FGM RVE approach, mixed 

boundary conditions are used. Here, periodicity is enforced on the sides of the RVE 

transverse to the grading direction, while KUBCs are prescribed in the through-thickness 

direction (graded direction). For both cases, appropriate loads are applied to the RVE 

depending on the type of homogenized property of interest. In 2D elastic and thermo-
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elastic models, triangular and quadrilateral quadratic generalized plane strain elements 

are used, while quadratic 3D stress elements are used in 3D cases. For steady-state and 

transient heat transfer, triangular and quadrilateral quadratic heat transfer elements are 

employed. A mesh refinement study was performed in the elastic analysis to determine an 

adequate mesh to properly discretize the geometry and obtain a converged solution. It is 

worth noting that in the case of the continuous modeling approach, a comprehensive 

mesh refinement study is difficult to achieve due to the large number of inclusions and 

tight packing fractions. For the most part, a large number of elements is needed, 

regardless, to generate a mesh with as few as possible distorted elements. The final 

element count for each simulation (approximately 800k for 2D continuous graded RVEs, 

200k for 2D LRVEs and 550k for 3D LRVEs) was assumed to be the same for the elastic, 

thermo-elastic and thermal analysis.      

4.4.1.1 Elastic Response 

The elastic modulus of the artificial model is estimated by applying a tensile load 

to the RVE and volume averaging the elastic response (stress and strain) throughout the 

RVE. Thus, the effective elastic moduli tensor 𝑪𝑪∗ is determined as  

 𝜎𝜎� = 𝑪𝑪∗𝜖𝜖 ̅ (4.1) 

where average stress, 𝜎𝜎�, and average strain, 𝜖𝜖,̅ are computed using Eqs. (2.50) and (2.51) 

and 𝑉𝑉 is the volume of the RVE. The tensile load is applied via prescribed displacement 

on a reference node and appropriate boundary conditions. In the case of LRVE models, 

this volume averaging is repeated for each volume fraction of interest. Meanwhile, in the 

case of the Continuous RVE, homogenization is repeated at each segment within the 

domain. The numerical homogenization results of both RVE approaches are compared to 

the well-known analytical and semi-analytical approximations and bounds of Voigt [3], 
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Reuss [4], SCM [7], and Hashin-Shtrikman [6] (Eq. (2.2), (2.3), (2.16), (2.17), (2.12), and 

(2.13), respectively). Here, the H-S bounds are denoted as H-S+ and H-S- for the upper 

and lower bounds, respectively. The results and comparisons at 20 and 500 °C are 

provided in Fig. 4.10. Figures 4.11-4.12 provide detailed results of each modeling 

technique (Layered and Continuous) compared to the rigorous bounds of Hashin and 

Shtrikman. It should also be noted for clarification that in this work the terms elastic 

modulus and Young’s modulus are used interchangeably.  

  
(a) (b) 

Figure 4.10. Effective elastic modulus (a) 20 °C and (b) 500 °C, all models. 

  
(a) (b) 

Figure 4.11. Effective elastic modulus (a) 20 °C and (b) 500 °C, layered models. 
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(a) (b) 

Figure 4.12. Effective elastic modulus (a) 20 °C and (b) 500 °C, continuous models. 

Examining Fig. 4.10, it can be seen that the effective elastic modulus estimation for the 

Layered and Continuous RVE approaches are similar to one another and fall within or 

close to the rigorous bounds. Furthermore, upon reviewing Figs. 4.11-4.12, it can be 

concluded that the 2D models predict slightly lower values for the effective elastic 

modulus, particularly at volume fractions below the transition zone (in this case, below 

0.6). These differences can be attributed to the assumption of generalized plane strain 

made for the 2D models. Moreover, upon examination of Fig. 4.12, modeling of the 

material grading appears to have little effect on the estimation of the effective elastic 

property determination, indicating that the LRVE approach is adequate to accurately 

estimate the effective composite property for the material parameters. Additionally, the 

effective elastic response has a similar trend to that of the 3D RVE, but not the exact 

results. Once again, differences here can be attributed to the plane strain assumption 

made.    
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4.4.1.2 Thermoelastic Response 

The CTE of the RVE is estimated by increasing the temperature of the RVE over 

the entire domain from a reference zero strain state and volume averaging the stress and 

strain throughout the RVE. Due to a mismatch in the CTE of each phase material, a 

resulting mechanical strain is produced within the body. Therefore, the total strain 𝜖𝜖, is 

given as 

 𝜖𝜖 = 𝜖𝜖𝑚𝑚 + 𝜖𝜖𝑡𝑡ℎ  (4.2) 

where 𝜖𝜖𝑚𝑚 and 𝜖𝜖𝑡𝑡ℎ are the mechanical and thermal strains, respectively. For convenience, 

the thermal strain can also be written as  

 𝜖𝜖𝑡𝑡ℎ = 𝛼𝛼∗(𝑇𝑇 − 𝑇𝑇0). (4.3) 

Here, 𝛼𝛼∗ is the effective CTE, and 𝑇𝑇0 and 𝑇𝑇 are the initial and final temperature, 

respectively. Thus, assuming a linear CTE and zero strain at 𝑇𝑇0, the effective CTE 𝛼𝛼∗ is 

determined as  

 𝛼𝛼∗ =
𝜖𝜖̅ − 𝜖𝜖𝑚̅𝑚

(𝑇𝑇 − 𝑇𝑇0) (4.4) 

where 𝜖𝜖 ̅and 𝜖𝜖𝑚̅𝑚 are the average total and mechanical strains, respectively, which are 

computed in a fashion similar to that used in Eq. (2.51). The computational thermal 

expansion results for 2D and 3D layered RVEs as well as 2D continuous RVE can be 

seen compared to the rigorous bounds of Schapery [13] and the approximations of Turner 

[10] and ROMs [3, 4], Eqs. (2.27), (2.28), (2.24), (2.22) and (2.23), respectively, in Fig. 

4.13. In the following figures, the Schapery bounds are denoted as Schapery+ and 

Schapery- for the upper and lower bounds, respectively. Figures 4.14-4.15 provide 
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detailed results of each modeling technique (Layered and Continuous) compared to the 

rigorous bounds of Schapery.  

  
(a) (b) 

Figure 4.13. Effective coefficient of thermal expansion (a) 20 °C and (b) 500 °C, all models. 

  
(a) (b) 

Figure 4.14. Effective coefficient of thermal expansion (a) 20 °C and (b) 500 °C, layered models. 
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(a) (b) 

Figure 4.15. Effective coefficient of thermal expansion (a) 20 °C and (b) 500 °C, continuous 
models. 

As seen in the above figures, the effective CTE falls within or on the rigorous bounds of 

Schapery. In addition, the choice of RVE appears to have little effect on the estimation of 

the effective property. Similar to the stress-strain response, the differences in the 2D RVE 

models (layered and continuous) from the 3D RVE could be attributed to the plane strain 

assumption used.   

4.4.1.3 Steady-State Thermal Response 

The effective RVE thermal conductivity is assessed by applying a specified 

temperature gradient across two faces of the RVE while insulating the remaining faces 

and assuming a steady-state condition. The temperature gradients and heat fluxes are then 

volume averaged to determine the effective thermal conductivity 𝑘𝑘∗ as determined by 

 𝑘𝑘∗∇𝑇𝑇� = −𝑞𝑞� (4.5) 

where the average temperature gradient, ∇𝑇𝑇�, and average heat flux, 𝑞𝑞�, are calculated in a 

fashion similar to Eq. (2.51). For layered RVEs, a temperature gradient is enforced using 
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PBCs to create a difference across two of the RVE faces/edges, while maintaining 

equivalent temperature change across the remaining faces of the RVE. In continuous 

models, a temperature gradient is applied along the grading direction. The thermal 

conductivity analysis results can be seen at 20 and 500 °C in Fig. 4.16, compared to the 

bounds of Hashin and Shtrikman [20], Wiener [16] and the approximation of Bruggeman 

[17] (Eqs. (2.39), (2.40), (2.34), (2.33) and (2.35), respectively). Figures 4.17-4.18 

provide detailed results of each modeling technique (Layered and Continuous) compared 

to the rigorous bounds of Hashin and Shtrikman.  

  
(a) (b) 

Figure 4.16. Effective thermal conductivity (a) 20 °C and (b) 500 °C, all models. 
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(a) (b) 

Figure 4.17. Effective thermal conductivity (a) 20 °C and (b) 500 °C, layered models. 

  
(a) (b) 

Figure 4.18. Effective thermal conductivity (a) 20 °C and (b) 500 °C, continuous models. 

Referring to the above figures, it is seen that the effective thermal conductivity results for 

each model are in fair agreement with one another. Similar to the other effective 

properties, the 2D RVE and 2D FGM RVE predict slightly lower results than the 3D 

RVE model, up to around 60% volume ceramic content, after which the models all 

predict similar effective thermal conductivity. Furthermore, all models exhibit similar 

behavior when the constituent phase materials are switched, as is the case when ceramic 
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volume fractions exceed 0.6. This observation emphasizes the importance of the 

transition zone on the determination of the effective properties through numerical and 

analytical approaches. In these cases, a distinct jump in the effective thermal conductivity 

is observed, particularly for lower temperatures (i.e., 20 °C), where there exists a larger 

contrast in constituent thermal conductivity. This behavior appears to be consistent with 

intuition, as the thermal transport increases as one would expect when a higher thermal 

conductivity material encompasses a lower conductivity material. Numerical simulations 

of the effect of the transition zone on the apparent composite material parameters will be 

presented in Section 0.  

4.4.1.4 Transient Thermal Response 

The effective RVE specific heat is determined by applying a uniform heat source 

to the body RVE and assuming a transient condition to allow the temperature to steadily 

increase with time. The temperature gradients and heat fluxes are then volume averaged 

to determine the effective specific heat 𝑐𝑐𝑝𝑝∗  as determined by 

 𝑄𝑄� = 𝐶𝐶𝑝𝑝∗ 𝜌̅𝜌
𝑑𝑑𝑇𝑇�
𝑑𝑑𝑑𝑑

 (4.6) 

where the average heat body flux, 𝑄𝑄�, and average temperature change with respect to 

time, 𝑑𝑑𝑇𝑇� 𝑑𝑑𝑑𝑑⁄ , can also be determined using Eq. (2.51) with proper variables and with a 

fixed time step of 0.01. The uniform heat source 𝑄𝑄� is applied to the entire model as a heat 

body flux, with the average density 𝜌̅𝜌 calculated using the ROM of Eq. (2.45). Figure 

4.19 presents the transient thermal response for the three models compared to the bounds 

of Rosen and Hashin [14] and the mixture rule of Koop’s Law [29], Eqs. (2.46), (2.47) 

and (2.44), respectively. 
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(a) (b) 

Figure 4.19. Effective specific heat (a) 20 °C and (b) 500 °C, all models. 

  
(a) (b) 

Figure 4.20. Effective specific heat (a) 20 °C and (b) 500 °C, layered models. 
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(a) (b) 

Figure 4.21. Effective specific heat (a) 20 °C and (b) 500 °C, continuous models. 

Examining the above figures, we can see that the analytical model approximations are, 

for the most part, coincident. This similarity in approximation is due to a combination of 

the lack of contrast in key material properties, such as density, specific heat and thermal 

expansion, all of which contribute to the estimation of the effective specific heat models. 

The 3D RVE effective specific heat prediction is well approximated by the analytical 

models, while the 2D RVE and 2D FGM models predict effective values close to or less 

than those of the analytical models. Furthermore, as with the other effective properties, 

the influence of the grading appears to be negligible on the estimation of the effective 

specific heat between the 2D-FGM models.   

4.4.2 One-Dimensional Material Variation, 3D Geometry 

In the previous analysis we considered the effective properties of a Ti/TiB2 FGM 

with grading in the through-thickness direction using simplified disks to model the 

inclusion phase. In the following study, we seek to obtain the same effective material 

properties by modeling the FGM as a three dimensional body using spherical inclusions 

using the same linear, quadratic and square root material distribution functions as 
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described in Fig. 4.5. The same discretization schedule used in the 2D geometry case is 

also adopted here in the 3D, although a 2 mm section is used with 21 layers, and a more 

computationally forgiving particle radius of 0.015 is used. Figure 4.22 provides samples 

of each of the volume fraction distribution models with spherical inclusion geometry. 

Following the same homogenization procedure outlined and used previously, the 

resulting elastic and thermoelastic response at 20 °C averaged over five artificially 

generated microstructures for each distribution compared to the H-S and Schapery 

bounds, respectively, is provided in Fig. 4.23.  

   
(a) (b) (c) 

Figure 4.22. Artificially generated continuous FGM RVE microstructures with spherical 
inclusions, (a) n=0.5, (b) n=1, and (c) n=2. 



www.manaraa.com

 
 

66 
 

  
(a) (b) 

Figure 4.23. Effective (a) elastic modulus and (b) CTE at 20 °C, 1D grading with 3D geometry. 

Examining the above figures, we can see that the through-thickness FGM with 3D 

geometry is closely approximated by the 3D LRVE with the 3D continuous elastic model 

being slightly outside of the H-S upper bound for reinforcement volume fractions above 

the swapping fraction of 0.5. Moreover, each of the grading profiles predict similar 

values regardless of the material variation for both the elastic and thermoelastic response. 

Furthermore, when comparing Figs. 4.23, 4.10 and 4.11, the 3D models (3D-FGM and 

3D-RVE) tend to predict stiffer effective Young’s modulus values when compared to 

their 2D counterparts. All of this could be accounted for by the fact that the 2D models 

assume a plane strain condition, which in some cases may not be a valid assumption. The 

steady-state and transient thermal responses have also been studied to compare the 

predicted values obtained by 3D models to those by 2D. Figure 4.24 provides a 

comparison of such properties for each modeling approach.       
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(a) (b) 

Figure 4.24. Effective (a) thermal conductivity and (b) specific heat at 20 °C, 1D grading with 3D 
geometry. 

Referring to the above figure, it can be seen that the predicted effective thermal 

conductivity values from the 3D-FGM model are similar to those obtained by the 3D 

RVE model, particularly at volume fractions about 0.6. An interesting observation is the 

estimated value of each model at approximately 60% TiB2 content. Here, large 

differences are observed between the two modeling approaches. This, however, can be 

explained by the differences in phase swapping used between the two models. In the case 

of the 3D RVE, phase swapping occurs at volume fractions above 0.6, while 3D FGM 

models swap the inclusion phases at 0.5. These differences are a direct result of the user-

defined swapping volume fraction, which will be addressed in great detail in Section 4.5 

to follow.  

4.4.3 Two-Dimensional Material Variation, 3D Geometry 

As previously mentioned, the predominant characteristic of FGMs is the ability to 

tailor material properties to best suit the anticipated loading conditions and desired 

response. As highlighted in CHAPTER 4, our proposed model is capable of modeling 

materials with variation of constituent materials in more than one principal direction. 
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Hence, the objective of this section is to highlight the effective properties of FGMs 

exhibiting material variation in two directions using the present modeling approach. 

Using the same Ti/TiB2 material properties described in the previous sections, the 2D 

material variation is modeled using 3D geometry and the 2D power law equation Eq. 

(3.2) along with the material variation parameters provided in Table 4-2. Figure 4.25 

provides visual illustration of the resulting 2D material variation. Examples of the 

resulting 2D material variation geometry are provided in Fig. 4.26.  

Table 4-2. Grading parameters for 2D 
Ti/TiB2 FGMs. 

 

   
(a) (b) (c) 

Figure 4.25. Artificially generated continuous 2D FGM RVE volume fraction distribution, (a) nz= 
nx=0.5, (b) nz= nx=1, and (c) nz= nx=2. 
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(a) (b) (c) 

Figure 4.26. Artificially generated continuous 2D FGM RVE microstructures with spherical 
inclusions, (a) nz= nx=0.5, (b) nz= nx=1, and (c) nz= nx=2. 

Conducting numerical homogenization on each layer (through-thickness) and section (in-

plane), the predicted elastic responses at 20 °C averaged over three artificially generated 

microstructures for each distribution are compared to the H-S bounds and plotted as color 

maps as a function of spatial orientation as shown in Fig. 4.27.  
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(a) (b) (c) 

Figure 4.27. Effective Young’s modulus at 20 °C for (a) Mdl-1 (b) Mdl-2 and (C) Mdl-3, for 2D 
grading with 3D geometry. 

As can be inferred from the above figure, the predicted values are similar to those 

obtained for 1D graded materials with 3D geometry. Moreover, the resulting effective 

property for each volume fraction depends on its location with Mdl-1 and Mdl-3 

exhibiting larger variations in the apparent effective property. This suggests that the 

surrounding volume fractions in each of the directions influence the effective elastic 

response. This spatial dependence can also be seen when investigating the effective 

thermoelastic response as shown in Fig. 4.28. Here, it can be seen that similar to the 

effective elastic response, while seemingly small, the location with respect to neighboring 

volume fractions appears to play a role in the effective thermoelastic response.   
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(a) (b) (c) 

Figure 4.28. Effective CTE at 20 °C for (a) Mdl-1 (b) Mdl-2 and (C) Mdl-3, for 2D grading with 
3D geometry. 

Additionally, the steady-state and transient thermal responses have also been investigated 

to determine the effect of 2D material variation on the effective thermal response. Figure 

4.29 provides the resulting effective thermal conductivity, while Fig. 4.30 displays the 

apparent specific heat.  
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(a) (b) (c) 

Figure 4.29. Effective thermal conductivity at 20 °C for (a) Mdl-1 (b) Mdl-2 and (C) Mdl-3, for 
2D grading with 3D geometry. 
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(a) (b) (c) 

Figure 4.30. Effective specific heat at 20 °C for (a) Mdl-1 (b) Mdl-2 and (C) Mdl-3, for 2D 
grading with 3D geometry. 

Referring to Figure 4.29, the effective thermal conductivity displays a similar response 

when compared to other modeling approaches and geometric considerations (LRVE vs. 

FGM and 2D vs. 3D). This suggests that there is less of a spatial dependence on the 

effective steady-state thermal response when compared to the elastic; as can be seen, 

there is less variation in the effective thermal conductivity for each region of similar TiB2 

volume fraction. Most notable is the distinct jump in the predicted effective value after 

the phase swapping fraction, which will be addressed in the following section. Similarly, 

the effective specific heat (Fig. 4.30) displays little dependence on the spatial location or 

surrounding volume distribution as its property is well estimated by Koop’s Law.  
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 Effects of Transition Zone  

In this work, the transition zone is defined as the volume fraction at which the 

constituent material phases are reversed. The motivation for this definition stems from 

considering the material composition of a graded composite. In such composites, the 

material variation evolves from a dominant phase-1 to phase-2 material. Throughout this 

evolution, there will exist regions where it will be difficult to distinguish the matrix from 

the reinforcement phase. This transition zone will greatly depend on the manufacturing 

process controlling the morphology of the constituents and the interactions of the 

materials at the micro level.  

As can be seen in the examples from Section 4.4 (particularly the thermal 

conductivity), selection of the volume fraction at which to switch the constituent phase 

materials plays a significant role in the estimation of the local effective property (see Fig. 

4.31). As can be deduced from this observation, determination of the effective local 

property will become even more clouded when contrast in the material properties 

increases. To investigate this transition or jump further, an example problem consisting of 

a 1-unit thickness 2D linearly graded (n=1, 𝜂𝜂=1) Ti/TiB2 system is evaluated using 

transition zones (swapped phases) of 0.40, 0.50 and 0.60 volume fractions. For 

clarification, at volume fractions at or below the transition zone, TiB2 acts as the 

reinforcement phase, while Ti performs the role of matrix. Above this transition zone, the 

phase materials are switched. Applying the same modeling principles used in Section 4.4, 

the effective elastic modulus, coefficient of thermal expansion, thermal conductivity and 

specific heat averaged over three randomly generated models are computed. Figures 4.32 

and 4.33 provide the effective property results with respect to volume fraction (thickness 

coordinate) and the assumed volume fraction of the transition zone. In these plots, trans-

04, trans-05 and trans-06 designate the 40%, 50% and 60% transition zones.  
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Figure 4.31. Effective thermal conductivity jump after transition zone. 

   
(a) (b) (C) 

Figure 4.32. Effective elastic modulus at 20 °C and transition zone volume fractions of (a) 0.4 (b) 
0.5 and (c) 0.6. 

 
Figure 4.33. Effective elastic modulus at 20 °C with varying transition zones. 
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As shown in the above figures, the effective elastic modulus tends to be well estimated by 

the H-S lower bound. When the reinforcement volume fractions exceeds that of the 

transition zone volume fraction there is a distinct jump in the apparent elastic modulus. 

This jump in apparent property is further emphasized when considering the steady-state 

thermal response as provided in Figs. 4.34 and 4.35 below.  

   
(a) (b) (C) 

Figure 4.34. Effective thermal conductivity at 20 °C and transition zone volume fractions of (a) 
0.4 (b) 0.5 and (c) 0.6. 

 
Figure 4.35. Effective thermal conductivity at 20 °C with varying transition zones. 

As can be seen in Figs. 4.34 and 4.35, the effective thermal conductivity estimation 

further highlights the significance of determining the location of the material transition 

zone. The effective property tends to be well estimated by the H-S lower bound for 

reinforcement volume fractions less than or equal to the transition zone. In the case when 



www.manaraa.com

 
 

77 
 

the reinforcement volume fraction exceeds the transition zone, there exists a distinct jump 

in the calculated effective property to approximately the Bruggeman or self-consistent 

approximation. To complete the transition zone study, a thermoelastic and transient 

thermal response were also investigated for the Ti/TiB2 graded system. Figures 4.36-4.39 

provide the results of this work.  

   
(a) (b) (C) 

Figure 4.36. Effective coefficient of thermal expansion at 20 °C and transition zone volume 
fractions of (a) 0.4 (b) 0.5 and (c) 0.6. 

 
Figure 4.37. Effective coefficient of thermal expansion at 20 °C with varying transition zones. 
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(a)   (b) (C) 

Figure 4.38. Effective specific heat at 20 °C and transition zone volume fractions of (a) 0.4 (b) 
0.5 and (c) 0.6. 

 
Figure 4.39. Effective specific heat at 20 °C with varying transition zones. 

Reviewing Figs. 4.36-4.39, it can be seen that the distinct jump in the estimation of the 

overall property is not as apparent as in the case of the elastic modulus and thermal 

conductivity. This response could be explained by the derivation of Schapery’s [13] 

effective CTE. Upon further investigation, it can be seen that the composite CTE is 

dependent on the bulk modulus of the constituents and the effective composite bulk 

modulus as well as the CTE of the constituents. In the case of the Ti/TiB2 system, the 

CTE of each phase are relatively similar to one another. In addition, while the elastic 

moduli may have high contrast, the H-S (Eq. (2.12)) effective composite bulk modulus 

bounds are fairly tight. Here, the maximum difference between the upper and lower 

bounds for the elastic and bulk modulus are approximately 46.1 and 10.1 GPa, as seen in 
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Fig. 4.40. This combination of similar CTE properties and tight bounds leads to little 

deviation in the homogenized values. The same rationale can be applied to the effective 

specific heat when regarding the Rosen-Hashin [14] formulation.    

  
(a) (b) 

Figure 4.40. Effective (a) elastic and (b) bulk modulus at 20 °C. 

The outcome of this study clearly indicates that the evolution of the material variation is 

key to an accurate prediction of the local overall effective properties. Particularly for 

material parameters with high contrast, the local effective property can differ drastically 

from neighboring properties with little change in the reinforcement volume fraction. In 

such cases image-based modeling may be beneficial and/or investigation of the material 

manufacturing process control may be necessary to properly facilitate the modeling of 

graded microstructures.    

 Material Model Validation 

 In the previous section, the proposed model was verified by comparing the 

numerically obtained effective material properties to those obtained using the analytical 

methods. Results of these simulations indicate that the proposed model falls within or 

very close to rigorous analytical bounds for each respective material property. The aim of 

this section is to validate the proposed model by comparing the estimated effective 
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properties to FGM experimentally obtained values available in literature. Because 

manufactured materials typically contain defects such as voids or porosity, a few of the 

models in the following validation incorporate a third material phase to address these 

defects using the same procedure outlined in Sections 4.2.1 and 4.3.1. 

4.6.1 Elastic Model Validation 

Elastic simulations have been carried out to validate the proposed FEM model 

using available experimental data found in literature. One such set of experimental data is 

that of Parameswaran and Shukla [92]. In their study, FGMs were fabricated using 

cenosphere inclusions and polyester or polyester-plasticizer matrix materials to estimate 

the effective Young’s modulus. The experimental FGM sheet measuring 250x250x12 mm 

was modeled as a 2D plate normalized to a 1x1 plate discretized into 50 layers using a 

characteristic radius of 0.003. The material distribution varies continuously from 0 to 

45% for cenospheres in polyester matrix and cenospheres in polyester-plasticizer with the 

volume fraction 𝜙𝜙 distributions shown in Fig. 4.41. The Young’s Modulus 𝐸𝐸 and 

Poisson’s ratio 𝜈𝜈 used in the analysis are taken from the work of Yin et al. [77] and are 

provided in Table 4-3. The resulting Young’s modulus predictions of this case study can 

be seen below in Fig. 4.42.  

Table 4-3. Material properties of Cenospheres, 
polyester and polyester-plasticizer. 

 

 

Material E (GPa) ν
Cenospheres, C 6.0 0.35
Polyester, P 3.6 0.41
Polyester-Plasticizer, P-P 2.5 0.33
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(a) (b) 

Figure 4.41. Volume fraction 𝝓𝝓 distribution for cenospheres in (a) polyester matrix (b) polyester-
plasticizer matrix, reproduced from [92]. 

 
Figure 4.42. Comparisons of effective Cenosphere FGM Young's moduli between the present 
model simulations, Yin model [77] and experimental data [92] for (a) polyester matrix and (b) 

polyester-plasticizer matrix. 

As can be seen in the above Figure, the proposed FEM compares reasonably well with 

the experimental data and with the particle interaction analytical model of Yin et al. [77].  

To illustrate the flexibility of the proposed model, elastic simulations are also 

carried out on materials that contain significant amounts of porosity or voids. One such 

comparison is the effective elastic properties of  Ni/MgO and Ni3Al/TiC graded materials 

experimental obtained by Zhai et al. [93]. To account for the porosity present in the 
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manufactured FGMs, a third phase was introduced to our model as voids with null elastic 

properties, using the nominal values of the experimental measured porosity provided in 

Fig. 4.43. The voids are modeled as disks and assumed to have a radius half that of the 

inclusion radius. The elastic properties of the fully dense Ni and MgO are taken to be in 

line with Voronoi cell finite element model (VCFEM) of Grujicic and Zhang [94] as: 

𝐸𝐸𝑁𝑁𝑁𝑁 = 180 GPa, 𝜈𝜈𝑁𝑁𝑁𝑁 = 0.33, 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 = 230 GPa and 𝜈𝜈𝑀𝑀𝑀𝑀𝑀𝑀 = 0.25, while the Ni3Al and 

TiC are taken as: 𝐸𝐸𝑁𝑁𝑖𝑖3𝐴𝐴𝐴𝐴 = 217 GPa, 𝜈𝜈𝑁𝑁𝑖𝑖3𝐴𝐴𝐴𝐴 = 0.3, 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇 = 440 GPa and 𝜈𝜈𝑇𝑇𝑇𝑇𝑇𝑇 = 0.19. 

Once again, the planar geometry was modeled as a 1x1 plate with a linearly varying TiC 

and MgO content. The geometry was discretized into 50 layers using a particle radius of 

0.005 units and with phase swapping when the inclusion volume fraction exceeded 0.5. 

The effective Poissons’s ratio is determined by dividing the negative of the average 

transverse strain by the average tensile strain in each layer. Comparisons of the 

experimental data, VCFEM and the particle interaction model of Yin with the proposed 

FEM averaged over five models are shown in Figs. 4.44 and 4.45 for Ni/MgO and 

Ni3Al/TiC, respectively.   

 
Figure 4.43. Experimentally measured FGM porosity in Ni/MgO and Ni3Al/TiC FGMs 

(reproduced from [94]). 
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Figure 4.44. Comparisons of Ni/MgO FGM effective Young’s modulus and Poisson’s ratio 

between the present model simulations, VCFEM [94], Yin model [77] and experimental data 
[93]. 

 

Figure 4.45. Comparisons of Ni3Al/TiC FGM effective Young’s modulus and Poisson’s ratio 
between the present model simulations, VCFEM [94], Yin model [77] and experimental data 

[93]. 

As can be seen in Figs. 4.44 and 4.45, the proposed model predicts the effective Young’s 

modulus and Poisson’s ratio reasonably well when compared to the experimental data 

and reference solutions with the best agreement found in the Ni3A/TiC material system. 

This could be explained by the fact that the reported porosity in this system is 

significantly lower than that of the Ni/MgO FGM. At higher volume fractions of 

porosity, the effects of size, shape and distribution of voids may play a larger role in the 

effective elastic response as suggested by Shen and Brinson [95]. Thus, it requires a more 

thorough investigation into the modeling of porosity, which is not within the scope of this 
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work. Moreover, it should be noted that while the proposed model is in fair agreement 

with the analytical model of Yin, the current model under predicts the Young’s modulus 

at full TiC concentration (TiC and porosity only). Meanwhile, the model of Yin predicts 

the exact experimental value. This was not expected by the author as the reported fully 

dense TiC Young’s modulus is less than the experimentally obtained value.    

In addition to evaluating the effective elastic response of FGMs, the current 

model has also been used to analyze the effective response of uniform composites. By 

reducing the number of layers and sections to one, the FGM model is converted into a 

classical RVE for fixed volume fraction composites. The user can then define the type of 

analysis and boundary conditions (periodic, kinematic and homogenous) to impose on the 

RVE. The process is illustrated by considering the experimental data of Wong and 

Bollampally [96], who measured the Young’s modulus for epoxy matrix composites 

containing three different types of inclusion materials: silica, alumina and silica-coated 

aluminum nitride (SCAN). Where silica was spherical, alumina was close to spherical 

and SCAN was irregular in shape. The material properties of the matrix and inclusion 

materials are provided in Table 4-4. The RVE used for each material is assumed to be a 

1x1 square with disk-shaped inclusions with a radius of 0.02. Tensile loads are applied to 

the RVE via PBCs, and the effective response is calculated in the same manner as 

outlined above. Comparisons of the effective Young’s modulus for silica, alumina and 

SCAN inclusion materials are shown in Fig. 4.46. The proposed model is found to be in 

good agreement with the experimental data which is also well estimated by the H-S lower 

bound.   
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Table 4-4. Elastic material 
properties of Expoy, Silica, SCAN 
and Alumina. 

 

 

(a) (b) 

 

(c) 
Figure 4.46. Comparisons of effective Young’s modulus for epoxy matrix composites between 
present model simulations, Hashin-Shtrikman (HS) bounds [97] and experimental data [96] for 

(a) silica (b) alumina and (c) SCAN reinforcement materials. 

Material E (GPa) ν
Epoxy 2.25 0.19
Silica 73.0 0.19
SCAN 330.0 0.25
Alumina 385 0.24
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4.6.2 Thermoelastic Model Validation 

In addition to the elastic model validation, Thermoelastic simulations have also 

been completed to validate the accuracy of the FEM in predicting the effective spatial-

dependent coefficient of thermal expansion. One such validation simulation uses the 

experimental data of a Molybdenum-Silicon Dioxide (Mo-SiO2) FGM obtained by 

Ishibashi et al. [98]. The cylindrical material samples with a diameter of 1.5 cm and 

height of 2.5 cm were assumed to be a normalized 1.7x1 2D plate discretized into 50 

layers with a characteristic particle radius of 0.003. The material properties of Mo and 

SiO2 are provided in Table 4-5. The material distribution varies continuously following 

the distribution approximated by the function shown in Fig. 4.47.  

Table 4-5. Mo and SiO2 material properties. 

 

 
Figure 4.47. Approximate Mo volume fraction 𝝓𝝓 distribution and experimentally measured [98]. 

Referring to Fig. 4.47, the Mo content varies from 0 to approximately 25%; thus, only 

one particle zone exists in this FGM and does not require transition considerations. 

Material E (GPa) ν α (10-6/K)
Mo 324.0 0.31 5.1
SiO2 80.4 0.18 0.54
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Figure 4.48 shows the comparisons of the predicted spatially variant CTE along the 

grading direction with the experimental data. As shown, the proposed model provides 

reasonable agreement with the experimentally obtained data and good agreement with the 

analytical model offered by Yin et al. [99]. These subtle differences, particularly at higher 

Mo content, could be explained by the fact that our model assumes monodispersed disks 

with a random distribution. This excludes any effects due to particle shape or distribution 

on the effective properties. Moreover, information regarding discovery or notation of 

porosity is not divulged by the authors, leading to the assumption that zero porosity is 

present in the manufactured material. Additionally, due to the non-monotonic Mo 

distribution shown in Fig. 4.47, the effective CTE does not vary monotonically in the 

grading direction but instead follows a distribution similar to that of the volume fraction. 

 
Figure 4.48. Comparisons of Mo/SiO2 FGM effective CTE distribution between present model 

simulations, Yin model [99] and experimental data [98]. 

Further model validation of the offered model is illustrated by considering the 

effective CTE distribution measured by Neubrand et al. [100] for an Al/Al2O3 FGM with 

linear grading of Al whisker-shaped particles. The material properties used for the 

analysis are shown in Table 4-6. For the analysis, the experimental 35x33x3 mm plates 

with a 17.5 mm grading length were modeled as a 2x1 normalized plate with the same 
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characteristic disk radius and discretization schedule used in the previous example. The 

effective CTE predicted by the current model are found to be in good agreement with the 

experimental values and the analytical model of Yin et al. [99], as indicated by Fig. 4.48.  

Table 4-6. Al and Al2O3 material properties. 

 

 
Figure 4.49. Comparisons of the Al/Al2O3 FGM effective CTE distribution between present 
model simulations, Yin model [99], Voigt and Reuss rule-of-mixtures and experimental data 

[100]. 

The predicted CTE values for uniform volume fraction composites have been 

validated by comparing to the experimental CTE data of the same the epoxy matrix 

composites discussed earlier in Section 4.6.1 and measured by Wong and Bollampally 

[96]. Once again the number of layers in the model is set to one, thus reducing the graded 

material model to a uniform composite. In this analysis, the model is assumed to be a 1x1 

plate with periodic boundary conditions. Material properties used in the simulation are 

provided in Table 4-7. As Fig. 4.50 shows, the predicted values of the present model are 

Material E (GPa) ν α (10-6/K)
Al 69.0 0.33 23.1
Al2O3 390.0 0.20 7.7
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in good agreement with the experimental data and FGM model of Yin et al. [99] (only 

Silica-Epoxy composite data are available).  

Table 4-7. Thermoelastic material properties of 
Expoy, Silica, SCAN and Alumina. 

 

Material E (GPa) ν α (10-6/K)
Epoxy 2.25 0.19 88
Silica 73.0 0.19 0.5
SCAN 330.0 0.25 4.4
Alumina 385 0.24 6.6
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(a) (b) 

 
(c) 

Figure 4.50. Comparisons of effective coefficient of thermal expansion (CTE) for epoxy matrix 
composites between present model simulations, bounds of Schapery [13], Voigt and Reuss rule-
of-mixtures, Turner [10] model and experimental data [96] for (a) silica with Yin model [99] (b) 

alumina (c) SCAN reinforcement materials. 

4.6.3 Thermal Conductivity Model Validation 

The accuracy of the FGM model in predicting the effective spatially dependent 

thermal conductivity of graded composites is first evaluated by considering the 

experimental data of Khor and Gu [101]. In this study, the authors investigated the 

effective thermal conductivity of an FGM TBC comprised of yttria-stabilized zirconia 

(YSZ) and NiCoCrAlY comprised of five layers, as shown in Fig. 4.51.  



www.manaraa.com

 
 

91 
 

 
Figure 4.51. Microstructure of the five-layer YSZ/ NiCoCrAlY FGM coating [101]. 

The experimental 1.25 cm diameter and 1.5 mm thick samples are modeled as a 2 x 0.25 

normalized plate with 21 layers and a disk radius of 0.003. Additionally, due to the 

recorded material porosity indicated by the authors, a third phase is introduced and 

modeled as air. Using the material properties provided in Table 4-8 and swapping the 

constituent phase materials at 80% YSZ content, as suggested by the high-percolation 

manufacturing, the results of the simulation are shown in Fig. 4.52.  

Table 4-8. Thermal material properties of YSZ, 
NiCoCrAlY and Air. 

 

Material k (W/m-K) Cp (kJ/kg-K) ρ (kg/m3)
YSZ 0.524 498.5 6050
NiCoCrAlY 4.303 545.0 8400
Air (20 °C) 0.026 1.01 1.225
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Figure 4.52. Comparisons of YSZ/ NiCoCrAlY FGM coating effective thermal conductivity 

predictions between present model simulations, Yin model [102] and experimental data [101]. 

As can be inferred from the above figure, the values predicted by the present model are in 

good agreement with the experimental results. Moreover, when compared to the 

analytical model of Yin et al. [102], the results could be interpreted as improved. This is 

due to the fact that the present model takes into account the effect of porosity on the 

effective thermal response. Meanwhile, the Yin model matches well for ZrO2 volume 

fractions less than 0.8 due to the assumption that the conductivity of ZrO2 is 2.0 W/m-K 

as opposed to the experimental value of 0.524 Wm-K, leading to an over prediction at 

higher ZrO2 contents.  

Additional conductivity validation is presented by considering the effective 

electrical transport process of an alumina/zirconia (Al2O3/ZrO2) FGM as measured 

experimentally by Sanchez-Herencia et al. [103]. The electrical conductivity, which of 

course is mathematically analogous to the thermal conductivity further expands the 

model validation by including additional material properties of interest for spatially 

variant composites. In these eight layer slip cast composites, yttria-stabilized tetragonal 

zirconia serves as the base layer while increasing the Al2O3 content in subsequent layers 

to a fully saturated outer layer. The FEM used to simulate the eight-ply FGM was carried 

out assuming a 2x1 flat plate with a 0.005 particle radius. The manufactured materials are 
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noted as having a high percolation limit of approximately 80% Al2O3 content. To address 

this, a varying number of layers (greater than eight) is used to alter the volume fraction at 

which the phase materials are switched to study the effect of phase substitution. The 

electrical conductivity 𝛾𝛾 of the constituent phase materials used in the analysis is 

provided in Table 4-9. The effective electrical conductivity for various swapping 

fractions predicted by the present model is compared to the experimental data and 

analytical model of Yin et al. in Fig. 4.53, with varying swap fractions indicated as 

“Present model, 𝑣𝑣𝑠𝑠=XX”, where XX is the swap percent used. As shown, the predicted 

values are in fair agreement with the experimental data. This is particularly true when the 

constituent phases are swapped at higher volume fractions (e.g., 𝑣𝑣𝑠𝑠 > 50%). At these 

swap fractions, the proposed FEM attempts to mimic the high percolation limit of the 

experimentally manufactured FGM with a Zr dominant matrix phase.  

Table 4-9. Electrical 
conductivity of Zr and 
Al2O3. 

 

Material γ (S/cm)
Zr 1.35E-1
Al2O3 1.11E-8
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Figure 4.53. Comparison of effective electrical conductivity for an Zr/Al2O3 FGM between 

experimental data [103] and present model with varying swap volume fractions. 

As a final conductivity model validation, we once again highlight the flexibility of 

the proposed model by considering the effective thermal conductivity of fixed volume 

fraction composites. The epoxy composite materials in this case are in the same 

experimental setup discussed previously by Wong and Bollampally [96]. The epoxy and 

filler material properties for the 1x1 RVEs with periodic boundary conditions are 

provided in Table 4-10. 

Table 4-10. Thermal conductivity of 
Expoy, Silica, SCAN and Alumina. 

 

Material
Epoxy
Silica
SCAN
Alumina

k (W/m-K)
0.20
1.5

220.0
36
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(a) (b) 

 

(c) 

Figure 4.54. Comparisons of effective thermal conductivity for epoxy matrix composites between 
present model simulations, Yin model [102] and experimental data [96] for (a) silica (b) alumina 

(c) SCAN reinforcement materials. 

Figure 4.54 displays the predicted effective thermal conductivity of the epoxy composites 

with Silica, SCAN and Alumina reinforcement materials. As shown, the predicted values 

are in good agreement with the experimental data and the analytical model of Yin et al. 

[102], further emphasizing the accuracy of the proposed model.    
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4.6.4 Specific Heat Model Validation 

The final model validation involves comparing the predicted effective specific 

heat values with experimentally available data. While multiple experimental data sets 

have been used to validate the previous material properties, experimentally obtained data 

for the effective specific heat of FGMs is not as bountiful. The presented validation uses 

the previously mentioned experimental data for a YSZ/NiCoCrAlY FGM TBC provided 

by Khor and Gu [101]. Using model parameters identical to those of the thermal 

conductivity model with the material properties provided previously in Table 4-8, the 

model is found to compare well with the experimental data, as shown in Fig. 4.55. 

 
Figure 4.55. Comparison of effective specific heat for an YSZ/ NiCoCrAlY FGM coating 

between present model, Kopp’s law [29] and experimental data [101]. 

 Effect of Porosity Distribution in Graded Materials 

While the primary focus of the previous work has been on determining the 

effective properties of FGMs, we now turn to study the effects of flaws and porosity on 

the resulting properties. Depending on the field of study, porosity can be seen as a 

nuisance that should be avoided at all costs or a well-received intentionally introduced 

feature. In the case of multifunctional structural/thermal management systems, the effects 

of porosity can be viewed as both beneficial and detrimental. For instance, consider 
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thermal protection materials such as silicon-based syntactic foams or the ceramic thermal 

tiles found on the NASA space shuttle. These tiles leverage the effects of porosity to 

control and enhance the materials’ thermal properties [104]. On the other hand, the 

introduction of voids, defects or porosity can have drastic implications on the effective 

mechanical properties of structural materials [95, 105]. Thus, our interest for this section 

lies in understanding how defects introduced deliberately or unintentionally influence the 

estimation of the effective temperature-dependent thermoelastic and thermal properties of 

graded composite materials. 

4.7.1 Modeling of Porous Graded Materials 

To investigate the effects of porosity on the material response, we will consider a 

three-phase FGM with material variation in the through-thickness direction only. Each 

FGM is composed of Titanium (Ti), Zirconia (Zr) and varying degrees and distribution of 

porosity, modeled as voids with physical properties of air. It is worth noting that our 

analysis requires values for the Young’s modulus and Poisson’s ratio of the void material 

to avoid numerical singularities. Thus a small value is used for the elastic stiffness to 

avoid these numerical issues. The material properties at 500 °C used in the forthcoming 

analysis are provided in Table 4-11.  

Table 4-11. Material properties of Ti [106], Zr [107] and air [108]. 

 

Similar to the 2D material variation functions, the distribution and magnitude of the 

porosity third-phase 𝒗𝒗𝒗𝒗(𝒛𝒛) is controlled using the following power law 

Material E (GPa) ν α (10-6/K) k (W/m-K) Cp (kJ/kg-K) ρ (kg/m3)
Ti 79 0.314 10.12 14.24 0.651 4357
Zr 89 0.333 6.29 1.94 0.598 3625
Voids 0.001 0 0 0.052 1.07 0.524
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 𝑣𝑣𝑉𝑉(𝑧𝑧) = 𝜂𝜂𝑧𝑧𝑣𝑣
𝑧𝑧𝑛𝑛𝑧𝑧𝑣𝑣

ℎ
  (4.7) 

where 𝜂𝜂𝑧𝑧𝑣𝑣 and 𝑛𝑛𝑧𝑧𝑣𝑣 are parameters controlling the porosity phase maximum content and the 

distribution profile in the through-thickness direction 𝑧𝑧. The actual reinforcement and 

matrix volume fractions 𝑣𝑣𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑣𝑣𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 , respectively, are calculated by 

 

𝑣𝑣𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑣𝑣𝑟𝑟 − 𝑣𝑣𝑣𝑣 

𝑣𝑣𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 = 1 − 𝑣𝑣𝑟𝑟 − 𝑣𝑣𝑣𝑣  . 

(4.8) 

In the current analysis, four different porosity profiles, denoted as “Profile-1 … Profile-

4”, are investigated using a 1D linear (𝑛𝑛𝑧𝑧 = 1,  𝜂𝜂𝑧𝑧 = 1) variation of Zr. For this study, the 

first two profiles exhibit a linear porosity variation (𝑛𝑛𝑣𝑣 = 1) with maximum content 𝜂𝜂𝑣𝑣 =

0.1 and 𝜂𝜂𝑣𝑣 = 0.7. The remaining two profiles use a constant porosity content of 𝜂𝜂𝑣𝑣 = 0.4 

and distribution profile parameters of 𝑛𝑛𝑣𝑣 = 2 and 𝑛𝑛𝑣𝑣 = 6. The resulting porosity 

distributions are plotted against the relative reinforcement volume fraction, as shown in 

Fig. 4.56. 
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Figure 4.56. Porosity distribution profiles vs. relative reinforcement volume fraction. 

4.7.2 Effective Properties of Porous Graded Materials 

Utilizing the modeling technique described in Section 4.3.1, the effective elastic, 

thermoelastic and steady-state and transient thermal responses are determined by dividing 

a 2x1 mm plate into 21 layers. A characteristic particle radius of 0.005 𝑚𝑚𝑚𝑚 (5 𝜇𝜇𝜇𝜇) is 

used to pack the geometry, with phase swapping occurring at 0.68 (particle + void 

fraction). The resulting predicted effective Young’s modulus for each porosity profile 

compared to the variational three-phase bounds of Hashin and Shtrikman [6] denoted by 

the upper (𝐻𝐻𝑆𝑆+) and lower (𝐻𝐻𝑆𝑆−) and the self-consistent scheme (SCM) approximation 

[8] are provided in Fig. 4.57. Figure 4.58 compares the resulting effective Young’s 

moduli for each of the porosity profiles. 
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(a) (b) 

  

(c)  (d) 

Figure 4.57. Effective FGM Young’s modulus for porosity distribution (a) Profile-1, (b) Profile-2, 
(c) Profile-3 and (d) Profile-4. 
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Figure 4.58. Effective FGM Young’s modulus for all porosity distribution profiles. 

Referring to Figs. 4.57 and 4.58, it can be seen that the effective Young’s modulus 

exhibits a strong dependence on the spatial distribution of porosity within the material. 

Moreover, drastic or aggressive magnitudes of porosity coupled with moderate changes 

in distribution result in a fast reduction of the effective elastic property (Profile-2). 

Meanwhile, profiles with lower magnitudes (Profile-1) and slower variations in the 

porosity volume fraction (Profile-3 and 4) are able to sustain higher elastic properties 

throughout the grading direction. The steady-state thermal response has been calculated 

for each porosity profile to understand the effect of voids on the effective material 

response. This is done by applying a known temperature gradient across the top and 

bottom boundaries in the grading direction and volume averaging the heat flux and 

temperature gradient of each section as described in detail in Section 2.6.6. The resulting 

effective thermal conductivity distributions are provided in Fig. 4.59 plotted against the 

rigorous H-S three-phase bounds (𝐻𝐻𝑆𝑆+ and 𝐻𝐻𝑆𝑆−) [20], the SCM approximation [19] and 

the Wiener ROM bounds [16]. Figure 4.60 compares the effective thermal conductivity 

for each porosity variation with respect to the relative Zr volume fraction. Examining 

each of these figures, similar conclusions can be drawn as those made for the effective 



www.manaraa.com

 
 

102 
 

elastic response. Moreover, as one would expect, greater reductions in the effective 

thermal conductivity are found for distributions where porosity is prevalent. 

  
(a) (b) 

  

(c)  (d) 

Figure 4.59. Effective FGM thermal conductivity for porosity distribution (a) Profile-1, (b) 
Profile-2, (c) Profile-3 and (d) Profile-4. 
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Figure 4.60. Effective FGM thermal conductivity for all porosity distribution profiles. 

We also consider the effects of porosity on the FGM thermoelastic response by 

estimating the CTE with respect to location. The effective CTE 𝛼𝛼∗ is estimated by 

applying a uniform temperature and volume averaging the thermal and mechanical strain. 

While structural loads are not applied to the body, mechanical strains are generated as a 

result of the mismatch in the CTE for each of the material phases. Homogenizing the 

thermoelastic response according to Section 2.6.7, the expansion results are compared to 

the bounds of Schapery [13] in Fig. 4.61, while Fig. 4.62 provides comparisons of each 

material distribution.  
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(a) (b) 

  

(c)  (d) 

Figure 4.61. Effective FGM coefficient of thermal expansion for porosity distribution (a) Profile-
1, (b) Profile-2, (c) Profile-3 and (d) Profile-4. 
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Figure 4.62. Effective FGM coefficient of thermal expansion for all porosity distribution profiles. 

As can be seen in the above figures, the effective thermal expansion exhibits a slight 

dependence on the spatial distribution of porosity within the material. Furthermore, 

moderate variations in porosity distribution (Profile-3 and Profile-4) results in a faster 

reduction of the effective thermoelastic property. Meanwhile, profiles with lower levels 

of porosity (Profile-1) result in little change in reported CTE values when compared to 

those of a two-phase Ti/Zr system.  

Lastly, we investigate the effects of porosity on the FGM transient thermal 

response using the proposed model to estimate the spatial dependence of the effective 

specific heat. The effective specific heat 𝐶𝐶𝑝𝑝∗ is evaluated by subjecting the material to a 

uniform heat source to the body 𝑄𝑄� and assuming a transient condition outlined in Section 

2.6.8. The effective specific heat was found to exhibit strong dependence on the porosity 

profile and the amplitude of the void content present in the grading direction. Figure 4.63 

depicts this dependence and was found to be in good agreement with the Koop’s mixture 

law. Moreover, as expected, low-volume fraction porosity profiles (Profile-1) deviate 

little from a virgin two-phase material. Meanwhile, profiles with higher void content 

(Profile-2, Profile-3 and Profile-5) approach 𝐶𝐶𝑝𝑝 values to that of air, with Profile-2 being 

the closest. Figure 4.64 provides a comparison of the effective specific heat for each 
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porosity profile, further demonstrating the dependence on the quantity and distribution of 

porosity in the system.  

  
(a) (b) 

  

(c)  (d) 

Figure 4.63. Effective FGM specific heat for porosity distribution (a) Profile-1, (b) Profile-2, (c) 
Profile-3 and (d) Profile-4. 
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Figure 4.64. Effective FGM specific heat for all porosity distribution profiles. 

4.7.3 Application of Porous Graded Materials 

Utilizing the effective material properties obtained in the previous exercise, the 

thermostructural effects of the porosity model are studied. In this analysis we consider the 

transient thermal and thermoelastic response of a two-dimensional flat plate subjected to 

a surface heat flux 𝑞𝑞 on the upper boundary as depicted in Fig. 4.65. Here, the upper 

surface (gray) represents a TPS or TBC material of thickness 𝑡𝑡1 = 0.25 𝑚𝑚𝑚𝑚 which is 

intended to remove or mitigate the effects of temperature on the underlying structural 

material (black surface). 

 
Figure 4.65. Effective FGM specific heat for all porosity distribution profiles. 
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As a benchmark, we consider a plate comprised of a Titanium alloy Ti-6Al-4V and 

Acusil® II syntactic foam, which serve as structural and TPS materials, respectively. The 

material properties of the Ti-6Al-4V and Acusil® II at 500 °C, referred to as Ti and TPS 

hence forth, used in the study are provided in Table 4-12. The baseline thermostructural 

response is compared to the same porous Ti/Zr FGMs with varying magnitudes and 

distributions of porosity as described in the previous section, with material variation for 

all FGMs acting in the through-thickness direction (top-bottom). For these computations, 

we assume temperature-independent material properties, a strain-free state at an initial 

temperature of 500 K and a plate with width 𝑤𝑤 and height ℎ of 0.5 and 1 mm, 

respectively. Applying a heat flux of 200 𝑊𝑊/𝑚𝑚2, the resulting temperature distribution 

for each case after 180 seconds is provided in Fig. 4.66 below.  

Table 4-12. Properties of Ti-6Al-4V [24], Zr [25] and Acusil® II [32] at 
500 °C. 

 

  

(a) (b) 

Figure 4.66. Resulting temperature vs. normalized thickness after 180 seconds (a) Ti/TPS 
material system, (b) Porous FGM profiles. 

Material E  (GPa) ν α  (10-6/K) k  (W/m-K) C p  (kJ/kg-K) ρ  (kg/m3)

Ti 79 0.314 10.12 14.24 0.651 4357
TPS 0.28 0.32 20.9 0.19 962 0.524
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Referring to Fig. 4.66, the normalized thickness spans the 𝑥𝑥2 direction of the plate with 1 

representing the top surface. It can be seen that the Ti/TPS system creates an abrupt 

change in temperature corresponding to the union of the underlying Ti and TPS material 

interface. Meanwhile, implementation of the porous FGM results in a drastic reduction of 

the through-thickness temperature gradient with minimal increase in temperature of the 

underlying material. The resulting thermostructural responses of each of these 

temperature distributions are provided in Fig. 4.67.   

 
Figure 4.67. Effective thermoelastic response vs. normalized thickness after 180 seconds for 

Ti/TPS and porous FGM distribution profiles. 

As can be inferred from the figure above, introducing the graded microstructure results in 

reduced stress concentrations when compared to the interface of the Ti/TPS system 

(𝑧𝑧 ℎ⁄ = 0.7). This is a direct result of two key coupled features of graded structures. 

First, a reduction of the through-thickness temperature gradient creates a uniform 

temperature field, thus creating a uniform thermal expansion throughout the body and 

therefore reducing stress concentrations. This is a direct result of reducing the differences 

in thermal conductivity and specific heat seen between base and typical TPS materials. 

Second, introduction of smoothly varying material properties reduce the elastic, 

thermoelastic and thermal mismatch, which is very pronounced in the Ti/TPS system. 
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Moreover, from Figs. 4.66 and 4.67, we can see that Profile-1 of the porosity 

distributions creates the most uniform stress distribution when compared to the remaining 

distributions at a minimal cost of increase in underlying material temperature. Thus the 

ideal material distribution would be a function of the maximum allowable top and bottom 

surface temperatures, stress, deflection, etc. 
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CHAPTER 5  

 THERMOSTRUCTURAL ANALYSIS OF FUNCTIONALLY GRADED 

HYPERSONIC PANELS 

In this chapter, application of the titanium/ titanium diboride metal-ceramic 

FGMs for hypersonic STATS is studied. It has been suggested that STATS may offer the 

advantage of reducing or eliminating many of the downfalls of conventional structural 

and thermal airframe materials, such as stress concentrations and temperature gradients, 

by incorporating spatial material grading into the structures [2, 109, 110]. Additionally, 

incorporating graded materials as multifunctional thermostructures can eliminate design 

constraints such as maximum bond line temperature (the interface between the TPS and 

skin) and thermally induce oxide growth of the skin material, both of which can be 

limiting factors in hypersonic airframe design using conventional approaches.  

 Representative Hypersonic Airframe 

In this work, a representative hypersonic monocoque airframe is considered using 

the geometry and coordinate system convention shown in Fig. 5.1. In this convention, the 

x-axis spans the longitudinal axis, while the clocking angle Φ defines the geometry in the 

circumferential direction. A characteristic flight trajectory for the airframe is provided in 

Fig. 5.2.  
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(a) (b) 

Figure 5.1. (a) Representative geometry and (b) coordinate system convention. 

 
Figure 5.2. Example flight trajectory. 

In the initial phase (climb), the missile is released from an elevated altitude from a sub to 

transonic speed (Mach 0.8-1.2) and accelerated to Mach 3 while performing a steep climb 

to above 60,000 ft. The second phase (cruise) is a hypersonic (Mach ≥ 5) cruise up to 10 

minutes in duration. The final phase of the trajectory (terminal) is a steep non-powered 

dive to the final destination. During the terminal phase, the vehicle may undergo erratic 

changes in trajectory, resulting in acceleration loads above 10 g’s.   

As discussed previously in great detail, the consequences of highly maneuverable 

airframes operating at high velocity are high structural loads due to maneuvering at high 

dynamic pressures and extreme temperatures as a result of aerodynamic heating. A 

design envelope for the expected skin temperatures is estimated to be in the range of 530-
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1100 °C (1000-2000 °F) using the anticipated cruise speed (Mach 8) and altitude along 

with Fig. 5.3 (a). Similarly, the expected dynamic pressure acting on the vehicle, 

assuming a range of 200 to 300 nautical miles, is expected to be between 100-150 kPa 

(see Fig. 5.3 (b)).  

 
(a) (b) 

Figure 5.3. (a) Steady-state temperature vs. Mach number at 80,000-ft [111] (b) Cruise range 
variation with dynamic pressure [112].  

The size of this titanium (Ti-6Al-4V) skin and Exelis Acusil® II TPS airframe has been 

determined to be suitable by the Air Force Research Laboratory (AFRL) Munitions 

Directorate using the in-house flight simulation analysis tool, Aerothermal Analysis 

Targets Program (ATAP). This analysis was also used to provide the time- and spatial-

dependent thermal and structural loads acting on the airframe. To focus the extent of this 

study, Section A-A of the airframe shown in Fig. 5.1 (a) will be used for benchmarking 

and future investigation. This 200 mm long section (disregarding the fins) is chosen 

because the titanium skin and Acusil® II TPS thickness are constant at 1.3 and 2.05 mm, 

respectively. The total effective mass of the section is 1.40 kg. Moreover, the variation in 
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the thermal load and dynamic pressure along the longitudinal axis is negligible, resulting 

in loads as a function of time and clocking angle, Φ. The time- and spatial-dependent 

recovery temperatures, skin coefficients, pressure, bending moments and force 

components acting on this section at various clocking angles are provided in Figs. 5.4-

5.6. As mentioned previously, time- and spatial-dependent thermal and mechanical loads 

on the section are a result of aerodynamic heating, high G maneuvers and dynamic 

pressure. In the data provided, moments about the remaining axis are assumed to be 

negligible (four orders of magnitude lower). Therefore, in Fig. 5.5 (b), only moments 

about the y-axis are presented and used in the upcoming analysis. Temperature-dependent 

material properties for the skin and TPS materials are provided in Table 5-1, while 

complete variation of the Ti alloy skin have been provided previously in Figs. 4.7-4.9.   
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(a) (b) 

Figure 5.4. Time- and spatial-dependent (a) recovery temperature (b) skin coefficient.  

  
(a) (b) 

Figure 5.5. Time- and spatial-dependent (a) pressure and (b) bending moments at front x1 and rear 
x2 of section.  

 
(a) (b) 

Figure 5.6. Time- and spatial-dependent force components (a) front x1 and (b) rear x2 of section.  
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Table 5-1. Material property variation of Ti-6l-4V [89] and Acusil® II [113] at 
20/600 °C. 

 

Modeling of the time- and spatial-dependent loading was accomplished using a two-step 

sequential temperature-dependent FEM in Abaqus/CAE. The time-dependent thermal 

solution was first established, and the results were used as prescribed conditions for the 

time-dependent mechanical analysis. A sequential analysis was preferred as the coupled 

thermal-stress analysis option in Abaqus does not permit the use of inertia relief to be 

enforced (details later). Utilizing symmetry about the longitudinal axis (geometric and 

loading), the geometry was meshed using 2D composite layup shell elements with three 

integration points through the thickness of each layer. The recovery temperatures, 𝑇𝑇𝑟𝑟, and 

skin coefficients, ℎ, provided by ATAP were used to calculate the applied heat flux, 𝑄𝑄, to 

the vehicle surface using the following relation: 

 𝑄𝑄 = ℎ(𝑇𝑇𝑟𝑟 − 𝑇𝑇𝑤𝑤) + 𝜖𝜖𝜖𝜖(𝑇𝑇∞4 − 𝑇𝑇𝑤𝑤4), (5.1) 

where 𝑇𝑇𝑤𝑤 and 𝑇𝑇∞ are the outside wall and ambient temperature, respectively; 𝜖𝜖 is the 

emissivity; and 𝜎𝜎 is the Stephan-Boltzmann constant. In Eq. (5.1), the ambient air 

temperature is assumed to be constant and is determined using the U.S. Standard 

Atmosphere, 1976 [114] table at 60,000 ft, resulting in an ambient temperature of 216.65 

K. The inside wall of the structure is assumed to be adiabatic, hence heat transfer to the 

inside of the missile atmosphere is not permitted.   

Temporal- and spatial-dependent loads are applied to the structural panels using 

the Abaqus user-defined FORTRAN subroutines DFLUX and DLOAD [115] for heat 

flux and pressure applications, respectively. Because automatic time stepping is utilized, 

Material E (GPa) ν α (10-6/K) k (W/m-K) Cp (kJ/kg-K)
Ti-6Al-4V 106/73 0.298/0.317 8.8/10.2 6.1/16 535.3/670
Acusil ® ii 0.28 0.320 20.9 0.05/0.19 962
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Abaqus determines the appropriate time increment based on the convergence of the 

previous iteration. In this case, the current time step may not coincide with the time 

resolution of the provided data. Moreover, the finite element discretization may not 

coincide with the spatial resolution of the provided data. To overcome these obstacles, an 

additional FORTRAN function was written within DFLUX and DLOAD to linearly 

interpolate the time and space variables (y and z positions) to determine the appropriate 

load. Section force components (axial and shearing) and bending moments are applied to 

reference points at the front and rear of the section and coupled to the section edges using 

coupling constraints and time interpolated using the same method as discussed above in a 

similar interpolative manner. Symmetric boundary conditions are used along the 

longitudinal axis of the section and on the leading edge, while the trailing edge was left 

unconstrained. As a result of the structure being in motion at each time step, the applied 

loads do not necessarily imply that the structure is in equilibrium. Such an analysis 

results in unconstrained DOFs typically requiring the use of a time-consuming dynamic 

analysis. However, in aero-structural analysis, the inertia relief solution technique is 

commonly used for such flight dynamics. Here, the acceleration forces from the dynamic 

system are applied as body forces to the model’s center of mass to constrain the model’s 

rigid body motion. This technique offers the benefit of reducing the computation time by 

allowing the system to be solved by inversion of the stiffness matrix in the typical 

fashion. Resulting thermomechanical response is then post-processed using the 

Abaqus/Python scripting interface to automate the tedious task of determining the stress, 

strain and temperature fields. Because coupling constraints are used to apply the 

aeroelastic loads to the section, post-processing the thermomechanical response is only 

considered in areas far away from the shell edges. This is done to eliminate spurious 

stress and strain values as it is well known that coupling constraints inherently tend to 

stiffen the nodes and elements in and near the vicinity of the constraint.  
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 Thermostructural Analysis: Longitudinal Uniform Heat Flux 

This section provides a detailed analysis of the thermostructural response of a 

skin/TPS (Ti-6Al-4V/Acusil® II) material system and Ti/TiB2 1D FGM subjected to a 

heat flux that is uniform along the longitudinal axis. However, due to changes in the 

angle of attack during the flight, variation in surface heat flux can be found along the 

circumferential direction of the airframe direction (clocking angle). As can be observed 

in Table 5-1, Acusil® II has very low thermal conductivity, as would be expected from a 

TPS material. However, based on its relatively low stiffness, it does not provide structural 

value to the airframe. The motivation for this work is to establish an effective structural 

response to the thermal and structural loads imposed on the section.  

To determine the effectiveness of replacing a conventional Ti/TPS with an FGM-

based system, a computational study was carried out to complement the benchmarking of 

the Ti/TPS structural panel by replacing the skin and TPS with an FGM 

structural/thermal panel graded in the thickness direction only. The FGM in this study is 

comprised of a two-phase, titanium (Ti-6Al-4V) and titanium di-boride (TiB2) composite. 

Titanium was chosen due to its high strength and temperature tolerance, and titanium di-

boride for its increased stiffness and temperature stability of mechanical and thermal 

properties. Temperature-dependent material properties of the constituents were provided 

previously in Section 4.4 via Table 4-1 and Figs. 4.7-4.9. As can be seen in the Tables, 

TiB2 may not appear to be an intuitive choice of material for thermal protection due to its 

relativity high thermal properties in relation to Ti-6l-4V. However, it has been shown that 

the high stiffness, low thermal expansion and temperature stability of TiB2 make it a 

promising choice for an FGM TPS. Ceramic grading was determined based on the power 

law distribution of Eq. (3.1). For this initial investigation, one configuration was chosen 

using a maximum ceramic content of 85% (𝜂𝜂=0.85) and quadratic grading profile (𝑛𝑛=2) 

with the distribution provided in Fig. 5.7. A total thickness of 1.25 mm was chosen, 

resulting in a FGM section with a mass of 1.24 kg.   
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Figure 5.7. Ceramic volume fraction distribution, Ti/TiB2. 

5.2.1 Thermal response 

Using the thermal loading data and modeling approach presented in Section 5.1, 

the thermal response of the Ti/TPS and Ti/TiB2 1D FGM material systems are evaluated. 

As previously mentioned, the thermal load is a function of time and clocking angle of the 

section. A snap-shot of the spatially varying heat flux applied to the section of interest 

can be seen at a time step during the climb phase of the trajectory in Fig. 5.8.  

 
Figure 5.8. Spatially varying heat flux. 

As can be seen in in Fig. 5.8, during the climb phase of the trajectory, the heat flux on the 

bottom surface is higher than that of the top surface due to the aerodynamic drag. The 
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time history of the outside and inside wall temperatures, in Kelvin, can be seen in Figs. 

5.9 and 5.10. 

 

 
Figure 5.9. Inside (left) and outside (right) wall temperatures for Ti/TPS (top) and Ti/TiB2 1D 

FGM (bottom). 

 
(a) (b) 

Figure 5.10. Outside and inside wall temperature difference (a) Ti/TPS (b) Ti/TiB2 1D FGM.  



www.manaraa.com

 
 

121 
 

As can be deduced from the above inside and outside wall temperatures, a thermal 

gradient of as much as 400 K exists in the Ti/TPS structure, coinciding with major 

adjustments during the trajectory (climb and terminal phases), while the Ti/TiB2 gradient 

is negligible. The temperature gradient at select times during the trajectory on the bottom 

of the Ti/TPS section (Φ=0) is provided in Fig. 5.11.     

 
Figure 5.11. Ti/TPS through-thickness temperature gradients at clocking angle 𝚽𝚽=0 degrees. 

Referring to Fig. 5.11, the through-thickness temperature gradient is predominant during 

major adjustments in the vehicle trajectory. At the beginning phase (t=10 and t=35 

seconds), the airframe is performing an aggressive climb, resulting in increased surface 

heat flux as a result of aerodynamic heating. Here, the TPS does not allow the heat to 

flow through to the underlying Ti-6Al-4V skin, resulting in large temperature gradients. 

In the cruise portion of the flight (t=100 to t=500 seconds), the airframe becomes heat 

soaked as a result of sustained high-velocity flight. Finally, during the terminal phase 

(t=589 seconds), the surface temperature once again begins to increase and resist flow to 

the inner surface. As a result of incorporating the Ti/TiB2 1D FGM, the temperature 

gradients throughout the section have been almost entirely eliminated, as can be seen 

when comparing the inside and outside wall temperatures in Fig. 5.9, or more clearly the 

outside to inside wall temperature difference in Fig. 5.10.  
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5.2.2 Thermostructural Response 

Using the structural loading data and modeling approach presented in Section 5.1, 

the thermal response of the Ti/TPS material system is evaluated. In this procedure, the 

time-dependent section temperature is imposed as prescribed temperature conditions to 

determine the current value of the temperature-dependent material parameters during the 

analysis. As a result of the temperature gradients present in the section and the mismatch 

of the thermal expansion and stiffness of the materials, stress gradients and stress 

concentrations are generated in the through-thickness and in-plane directions of the 

section. The stress gradients and concentrations at 𝑡𝑡=572 seconds of the analysis are 

shown in Fig. 5.12, where stress is plotted vs. the normalized thickness at 0, 90 and 180 

degree clocking angles (bottom, middle and top), with unity representing the top layer of 

the layup (outside wall).   

 
(a) (b) 

Figure 5.12. Ti/TPS stress gradient (a) maximum principal (b) Von Mises. 

As one can see, abrupt changes in stress occur at the interface of the Ti and TPS materials, 

as one would expect. Upon analyzing the entire time history, it was found that the time 

range 560-598 seconds appeared to generate the highest combined thermal and mechanical 

loads on the structure. Examining the results in this time range, the maximum outboard 

deflection was found to be approximately 9.4 mm in the middle of the section (Φ=90°).   
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  The combined thermo-mechanical response of the Ti/TiB2 1D FGM panel was 

found to be the most severe around the same time as the analysis of the Ti/TPS system. 

As a result of reducing the through-thickness temperature gradients and the amount of 

contrast in the stiffness and thermal expansion, a reduction in the through-thickness stress 

concentration in this time range was observed. As indicated by Fig. 5.13, the stress 

contours have reduced the concentrations along the thickness. This is particularly 

highlighted when examining the maximum principal stress of Fig. 5.13 (a). In addition to 

a uniform temperature and a reduction in stress gradients, the maximum outboard 

deflection and overall panel weight has been reduced as indicated by Table 5-2. It is 

worth noting that the results in the meantime must not be taken as absolute certainty. In 

the thermostructural analysis, it has been assumed that the maximum stress must not 

exceed that of either of the constituents’ yield or ultimate strength. In this case, a 

maximum principal stress of approximately 350 MPa is observed on the outer surface 

corresponding to a 0.15 Ti-6Al-4V and 0.85 TiB2 volume fraction distribution.  

 
(a) (b) 

Figure 5.13. Ti/TiB2 1D FGM stress gradient (a) maximum principal (b) Von Mises. 
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Table 5-2. Comparison of outboard deflections: 
Ti/TPS vs Ti/TiB2 1D FGM. 

 

 Thermal and Thermostructural Analysis: Non-uniform Heat Flux 

One of the predominant characteristics of FGMs is the ability to tailor material 

properties or behavior with the end goal of optimizing and/or producing a desired system 

response. Thus, the anticipated loading seen by the structure strongly influences the types 

of materials used and the manner in which they are varied. This becomes even more 

beneficial due to the fact that one aspect of the thermal loading conditions in hypersonic 

airframes that is not well understood is the transition from laminar to turbulent flow. 

With many computational fluid dynamics (CFD) simulations of flight trajectory, the 

transitional boundary layer between laminar and turbulent flow must be approximated by 

empirical tools, experimental data or engineering judgment [116]. For this reason, 

structures are typically assumed to be turbulent over the entire geometry. Such an 

assumption leads to aerodynamic heating of approximately four to eight times that of 

laminar flow [117]. Modeling of the correct transitional boundary layers has been found 

to produce significantly higher thermal gradients, which can result in higher panel 

temperatures than that of purely turbulent flows [118]. Therefore, working with members 

of the AFRL Munitions Directorate, the location of the transitional boundary layer has 

been approximated, and models of the location have been created to determine the 

influence of non-uniform heating conditions on the thermal and thermostructural 

response.  

For this study, the same representative time-dependent structural and thermal 

loads used in the uniform heat flux example are utilized and modified to model the 

kg % diff. mm % diff.
Ti/TPS 1.4 - 9.4 -
Ti/TiB2 FGM 1.2 -11 6.8 -28

Configuration Mass Deflection
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laminar to turbulent transitional heating effects. The temporal- and spatial-dependent 

laminar heat flux, 𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙 is calculated the same as described previously in Eq. (5.1). The 

transitional boundary layer heat flux 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is modeled using the adopted technique of 

Riley et al. [118], where the laminar to turbulent heat flux transition is a continuous 

piecewise function as described by 

 𝑄𝑄(𝑥𝑥, 𝑡𝑡) = �
𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥, 𝑡𝑡), 𝑥𝑥 < 𝑥𝑥𝑜𝑜𝑜𝑜
𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠(𝑥𝑥, 𝑡𝑡), 𝑥𝑥𝑜𝑜𝑜𝑜 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒
𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥, 𝑡𝑡), 𝑥𝑥 > 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒

 . (5.2) 

Here, the heat flux at any location 𝑥𝑥 between the onset, 𝑥𝑥𝑜𝑜𝑜𝑜, and end location, 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒 

(transitional region), is computed using a Gaussian distribution function as described by 

Eq. (5.3). The location and amplitude of the heat flux is determined by the overshoot 

parameters, 𝑥𝑥𝑜𝑜𝑜𝑜 and 𝑄𝑄𝑜𝑜𝑜𝑜, respectively, which account for the possibility of heat fluxes 

exceeding that of turbulent flow, which has been observed in both physical and numerical 

experiments [119, 120] 

 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = (1 + 𝑄𝑄𝑜𝑜𝑜𝑜)𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑥𝑥𝑜𝑜𝑜𝑜𝑒𝑒
�−(𝑥𝑥−𝑥𝑥𝑜𝑜𝑜𝑜)2

2𝜎𝜎2 � (5.3) 

with the standard deviation, 𝜎𝜎, defined as  

 𝜎𝜎 = �−
1
2

(𝑥𝑥𝑜𝑜𝑜𝑜 − 𝑥𝑥𝑜𝑜𝑜𝑜)2/𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙|𝑥𝑥𝑜𝑜𝑜𝑜

(1 + 𝑄𝑄𝑜𝑜𝑜𝑜)𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑥𝑥𝑜𝑜𝑜𝑜
� (5.4) 

For the extent of this work, onset and overshoot locations of 𝑥𝑥𝑜𝑜𝑜𝑜 𝐿𝐿 =⁄ 0.3 and 

𝑥𝑥𝑜𝑜𝑜𝑜 𝐿𝐿 = 0.7⁄  are used along with an overshoot value of 𝑄𝑄𝑜𝑜𝑜𝑜 = 0.5 to study the influence 

of transitional heating and overshoot effects on traditional layered TPS as well as 1D and 

2D graded FGMs. Considering a general case, the laminar, turbulent and transitional heat 

fluxes are plotted together in Fig. 5.14. 
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Figure 5.14. Transitional heat flux profiles. 

A before, temporal- and spatial-dependent thermal loads are applied to the structural 

panels using an Abaqus user-defined subroutine DFLUX [115]. Examples of the two 

types of applied heat flux profiles are provided in Fig. 5.15. 

 

(a) (b) 

Figure 5.15. Circumferential (a) and longitudinal and circumferential heat flux profiles (b). 

In this example, FGMs are modeled using Eqs. (3.1) and (3.2) for material variation in 

one and two dimensions. Values chosen in this study for 1D and 2D graded structures 

were selected such that each created equivalent mass between the 1D and 2D graded 

systems (1.24 kg). The resulting parameters are summarized in Table 5-3 and shown 
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graphically in Fig. 5.16. In this work, the 1D and 2D Ti/TiB2 FGM panels are denoted as 

Ti/TiB2 1D FGM and Ti/TiB2 2D FGM, respectively.  

Table 5-3. Grading parameters for 1D and 2D Ti/TiB2 FGMs. 

 

 

(a) (b) 

Figure 5.16. Ti/TiB2 FGM grading profiles (a) 1D and (b) 2D.  

5.3.1 Thermal Response 

Applying the transitional heating profiles seen in Fig. 5.14, and applying the same 

modeling approach as in Section 5.2, the thermal response of the Ti/TPS has been 

evaluated using overshoot parameters of 𝑄𝑄𝑜𝑜𝑜𝑜=0.0 and 𝑄𝑄𝑜𝑜𝑜𝑜=0.5. Figures 5.17 and 5.18 

provide the thermal response of the Ti/TPS, Ti/TiB2 1D FGM and Ti/TiB2 2D FGM 

material systems subjected to a laminar to turbulent transitional surface heating with 

overshoot parameters of 𝑄𝑄𝑜𝑜𝑜𝑜 = 0 and 𝑄𝑄𝑜𝑜𝑜𝑜 = 0.5, respectively. 

Grading ηr ηx nr nx

1D (through-thickness) 0.9 - 2 -
2D (through-thickness/in-plane) 0.9 1 2 2
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Figure 5.17. Wall temperature vs. normalized panel width subject to transitional heat flux 

(𝑸𝑸𝒐𝒐𝒐𝒐=0.0); from top to bottom: Ti/TPS, Ti/TiB2 1D FGM and TiTiB2 2D FGM. From left to 
right: inside and outside wall.  
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Figure 5.18. Wall temperature vs. normalized panel width subject to transitional heat flux 

(𝑸𝑸𝒐𝒐𝒐𝒐=0.5); from top to bottom: Ti/TPS, Ti/TiB2 1D FGM and TiTiB2 2D FGM. From left to 
right: inside and outside wall.  

When comparing the outside to inside wall temperatures in the above plots, it can be 

realized that a through-thickness temperature gradient exists in the Ti/TPS system for 

both transitional heat flux loading cases. Additionally, an in-plane temperature gradient is 

present on the inside and outside surface of the Ti/TPS system when observing the 

temperature profiles across the normalized panel width. Both of these thermal gradients 
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can be clearly seen in Figs. 5.19 and 5.20 for overshoot parameters of 0.0 and 0.5, 

respectively. Similar to the previous case of laminar heat flux, the graded material 

systems eliminate the through-thickness temperature gradients that are present in the Ti-

6Al-4V/TPS system. Moreover, the longitudinal temperature gradients have been 

significantly reduced from approximately 133 K for the Ti-6Al-4V/TPS panel to 47 and 

38 K for the 1D and 2D FGM panels, respectively. For the particular transitional model 

parameters chosen in this study, only a 9 K temperature difference is observed. However, 

for different heating parameters and material system combinations, the efficiency in 

reducing in-plane temperature gradients may be exploited further. The aim of the current 

work was to provide a proof of concept for future modeling and investigation. 
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Figure 5.19. Outside and inside wall temperature difference subject to transitional heat flux 
(𝑸𝑸𝒐𝒐𝒐𝒐=0.0) at t=120 seconds. From top to bottom: Ti/TPS, Ti/TiB2 1D FGM and TiTiB2 2D 

FGM.  
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Figure 5.20. Outside and inside wall temperature difference subject to transitional heat flux 
(𝑸𝑸𝒐𝒐𝒐𝒐=0.5) at t=120 seconds. From top to bottom: Ti/TPS, Ti/TiB2 1D FGM and TiTiB2 2D 

FGM. 

 Optimization of Spatially Tailored Materials 

In the previous sections, grading profiles (through-thickness and in-plane), were 

chosen using engineering judgement to create a structure with an enhanced, but not 

necessarily optimal, thermomechanical response,. However, in most cases, this approach 

will not be useful as surveying multiple material combinations, grading parameters, 
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trajectories, etc., will become cumbersome to analyze manually. Therefore, the aim of 

this section is to present a methodology for determining material distribution and 

topology resulting in an optimal thermostructural response subject to design constraints.  

5.4.1 Optimization Procedure 

The appeal of spatially tailored materials is the ability to vary the microstructural 

properties via phase volume fraction manipulation to produce a macro structure that 

produces an enhanced or desirable thermostructural response. In the context of this work, 

an enhanced response can be seen as a structure that meets design requirements and 

constraints at a reduced mass. To present this optimization framework, we once again 

consider a portion of the entire missile geometry shown in Fig. 5.1. Additionally, we 

assume that the material variation is continuous following the grading distribution 

functions in Eq. (3.1) and (3.2). The proposed approach is highlighted by the use of 

detailed micromechanical models discussed in 0 along with representative 

thermostructural analysis shown in Sections 5.2 and 5.3, to determine optimal parameters 

such as spatial distribution, materials and topology over a bounded space and design 

constraints. 

 Determination of optimal design parameters is performed using a “black box” 

approach, where solutions from the structural FEA are piped into an optimization solver. 

Here, the solver is used to evaluate and determine the next design point in the process. In 

this work, a sequential quadratic programming (SQP) Matlab algorithm fmincon, is used 

to determine optimal design parameters. This iterative procedure is efficient at finding 

numerical solutions to constrained nonlinear optimization problems. However, like many 

optimization techniques, in certain scenarios, SQP is known to succumb to finding local 

and not global minima. To overcome this potential issue, genetic algorithms (GAs) have 

been implemented for situations where it is known or expected that many local minima 

may exist in the design space. Because an analytical solution cannot be used, the 
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downfall of the FEA “black box” approach is that many function evaluations and 

duplicate calls are required by the optimization processes, resulting in additional 

computational expense. To overcome the computational cost, this approach leverages 

Kriging surrogate models to approximate the response of the system with various 

configurations. With this hybrid tactic, optimal configurations can be quickly identified 

with the least amount of computer resources.  

The procedure for this approach is to first define the design space and constraints. 

For this study, this involves defining the minimum and maximum panel thickness and a 

range of grading parameters for 1D and 2D material variations. Next, a sample of the 

design space is taken using Latin Hypercube Sampling (LHS) to provide a randomly 

distributed envelope of parameters. The thermostructural response of these “training” 

points are then computed using the proposed FEM. Next, a surrogate response surface is 

generated using Kriging regression modeling. Kriging and the construction of the 

response surface is accomplished using the design of computer experiments, commonly 

referred to as DACE, Matlab toolbox [121]. After the response surface is constructed, 

random points inside the domain (typically, 5x the number of design variables) are used 

to determine the accuracy of the surrogate by computing the root mean squared error 

(RMSE), given as 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
�(𝑥𝑥𝑖𝑖 − 𝑥𝑥�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (5.5) 

where 𝑛𝑛 is the number of samples and 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝚤𝚤�  are the estimated and true values, 

respectively, where the estimated value is taken from the surrogate response surface and 

the true value is assumed to be the FEA solution. The RMSE is used to gauge whether or 

not the response surface is accurate enough in predicting values needed for the design 

constraints, such as stress, deflection, temperature and temperature gradient. Acceptable 

values vary depending on the field response, but in this work values within 10% are 
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deemed acceptable as initial response surfaces. Outside of this error, it is advised to add 

additional training points (design points) or place points in regions were the model is 

more prone to error. With a satisfactory surrogate surface, the optimization solver is then 

initialized with a starting point, and an optimal design point 𝑥𝑥∗ is determined. Finally, 𝑥𝑥∗ 

is analyzed using the FEM and compared to the estimated value. If the difference is 

within some tolerance (typically 2.5%), the optimal value is accepted and the analysis 

terminated. However, if the difference is outside of the tolerance, the optimal point along 

with its true value are added to the initial design space, a new response surface is 

constructed and the analysis is continued. This entire procedure is shown graphically in 

Fig. 5.21.  

 
Figure 5.21. Outline of functionally graded panel optimization procedure. 
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5.4.2 Optimization Examples 

To illustrate the various aspects of the optimization procedure, two examples 

optimizing a FGM hypersonic panel are provided. For this optimization, consider the 

two-phase Titanium (Ti-6Al-4V) and Zirconia (ZrO2) FGM, with Ti-6Al-4V and ZrO2 

serving as the metallic and ceramic phases, respectively. The material composition in 

each example is assumed to be continuous and varies along a single dimension (through-

thickness), resulting in the spatially variant volume fractions 𝑣𝑣(𝑧𝑧)𝑖𝑖 with 𝑖𝑖 = 1, 2, as 

defined by Eq. (3.1). Throughout the optimization procedure, possible optima designs are 

assumed to be valid so long as they meet the prescribed constraints. Limitations such as 

manufacturing to the optimal thickness or grading parameter is not considered. The 

material properties for Ti-6Al-4V are provided in Table 4-1 and Figs. 4.7-4.9, while 

material parameters for ZrO2 are provided in Table 5-4 and Figs. 5.22-5.24. It is also 

worth mentioning that the density of ZrO2 used in the following examples is not typical 

of experimental values found in the literature for low-porosity samples (approximately 

4800 to 5600 kg/m3). Specifics regarding the porosity content and fabrication method 

used were not disclosed by the authors. The reduced density points towards high-porosity 

samples fabricated with a low sintering temperature. None-the-less, for the sake of 

consistency, the authors’ experimentally obtained values will be used.  

Table 5-4. Material properties of ZrO2 at 20/500 C [107]. 

 

Material E (GPa) ν α (10-6/K) k (W/m-K) Cp (kJ/kg-K) ρ (kg/m3)

ZrO2 117/82 0.33 8.85/6.5 1.78/1.98 459/610 3657
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Figure 5.22. Temperature-dependent elastic modulus and Poisson’s ratio of ZrO2 [107]. 

 
Figure 5.23. Temperature-dependent coefficient of thermal expansion and ultimate strength of 

ZrO2 [107]. 

 
Figure 5.24. Temperature-dependent thermal conductivity and specific heat of ZrO2 [107]. 

For the 1D graded panels, the constrained optimization problem is formulated as  
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𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚:𝑚𝑚 = 𝑚𝑚(𝑡𝑡,𝑛𝑛)  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:�

𝜎𝜎 − 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 0
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑡𝑡 < 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑛𝑛 < 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚
𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜂𝜂 < 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚

. 

(5.6) 

Here, 𝑚𝑚 is the system mass as a function of the panel thickness 𝑡𝑡, through-thickness 

grading parameter 𝑛𝑛 and density of each material phase, while 𝜎𝜎 and 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 are the 

maximum stress and allowable stress in the outer layer of the panel. The mass for a 

theoretically continuous material variation is calculated by integrating the effective 

density through the normalized thickness 𝑡𝑡̅ and/or in-plane directions (normalized panel 

length 𝐿𝐿� ) for 1D and 2D grading, respectively. For 1D grading in the thickness direction 

only, 𝑚𝑚 is described by 

 𝑚𝑚 = � 𝑣𝑣𝑣𝑣(𝑧𝑧̅)𝑑𝑑𝑧𝑧̅
𝑡̅𝑡

0
 (5.7) 

where 𝑡𝑡̅ = 1 and 𝜌𝜌(𝑧𝑧̅) is the density as a function of the normalized thickness coordinate 

𝑧𝑧̅, which is calculated by 

 

𝜌𝜌(𝑧𝑧̅) = 𝜙𝜙1𝜌𝜌1 + 𝜙𝜙2𝜌𝜌2 

𝜙𝜙1 = 1 − 𝜙𝜙2 

(5.8) 

with 𝜙𝜙1 and 𝜙𝜙2 being the volume fractions of the first and second material phases. The 

volume 𝑣𝑣 for a cylinder is calculated using the well-known equation  
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 𝑣𝑣 = 𝜋𝜋𝜋𝜋(𝑟𝑟𝑜𝑜2 − 𝑟𝑟𝑖𝑖2). (5.9) 

Here, 𝐿𝐿 is the panel length, and 𝑟𝑟𝑜𝑜 and 𝑟𝑟𝑖𝑖 are the outer and inner radius of the cylindrical 

section. Substitution of Eqs. (5.8) and (5.9) and the 1D grading profile of Eq. (3.1) into 

(5.7) results in the following relationship 

 
𝑚𝑚 = 𝜋𝜋𝜋𝜋(𝑟𝑟𝑜𝑜2 − 𝑟𝑟𝑖𝑖2)∫ ��1 − 𝜂𝜂𝑧𝑧�𝑧𝑧 ℎ� �

𝑛𝑛𝑧𝑧
 � 𝜌𝜌1 +𝑡𝑡

0

𝜂𝜂𝑧𝑧�𝑧𝑧 ℎ� �
𝑛𝑛𝑧𝑧

 𝜌𝜌2� 𝑑𝑑𝑧𝑧̅. 
(5.10) 

Using the variable 𝑧𝑧̅ = 𝑧𝑧/ℎ and integrating through 𝑡𝑡̅, the mass is found as    

 𝑚𝑚 = 𝜋𝜋𝜋𝜋(𝑟𝑟𝑜𝑜2 − 𝑟𝑟𝑖𝑖2) �𝜌𝜌1 +
𝜂𝜂𝑧𝑧

(𝑛𝑛𝑧𝑧 + 1)
(𝜌𝜌2 − 𝜌𝜌1)�. (5.11) 

A Similar analysis can be completed for material variation in two dimensions. It is worth 

noting that in Eq. (5.6) only a stress constraint is enforced. While it is possible, and in 

some scenarios necessary, enforcement of other constraints such as maximum inside wall 

temperature, outboard deflection, etc., are possible but not considered in the following 

thermostructural optimization. For each example, we assume that the outer ceramic layer 

is the limiting mechanical factor, such that failure will first occur on the outermost layer 

and is limited by the strength of the material at the current temperature. In this case, the 

maximum principle stress criterion is used, which assumes that the material will fail 

when the maximum principal stress 𝜎𝜎1 exceeds the uniaxial tensile strength 𝜎𝜎𝑡𝑡. Equally, 

the material is also said to have failed when the minimum principal stress 𝜎𝜎3 is less than 

the uniaxial compressive strength 𝜎𝜎𝑐𝑐. A safe region for the material is defined to be when 
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 𝜎𝜎𝑐𝑐 < 𝜎𝜎3 < 𝜎𝜎1 < 𝜎𝜎𝑡𝑡. (5.12) 

The structural design constraint is enforced by the maximum principal stress 𝜎𝜎 of the 

outer material layer, which is normalized by the ultimate strength 𝑆𝑆𝑢𝑢𝑢𝑢 at a given 

temperature 𝑇𝑇 of the panel described by 

 𝜎𝜎� =
𝜎𝜎

𝑆𝑆𝑢𝑢𝑢𝑢(𝑇𝑇) (5.13) 

During post-processing, the maximum normalized principal stress 𝜎𝜎� is calculated to 

determine the status of the structural constraint. Elements with values greater than one are 

presumed to have violated the mechanical stress constraint.  

For most structural ceramic materials, the strength is commonly measured in a 

flexural mode with the strength of the brittle material limited by the quantity and 

distribution of flaws in the specimen. To account for variability within each specimen, a 

two-parameter Weibull analysis is recommended and frequently used [122]. In this 

statistical model, the probability of failure 𝑃𝑃𝐹𝐹 at an applied stress 𝜎𝜎 is given by  

 𝑃𝑃𝐹𝐹 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �− �
𝑉𝑉
𝑉𝑉0
� (𝜎𝜎 𝜎𝜎0⁄ )𝑚𝑚� (5.14) 

where 𝑉𝑉 and 𝑉𝑉0 are the specimen volume and volume scaling parameter, and 𝜎𝜎0 and 𝑚𝑚 

are the characteristic strength and Weibull modulus. Here, 𝑚𝑚 is a measure of flaws within 

the specimen, with larger values indicating less variability, and larger values of 𝜎𝜎0 

implying greater strength. While the flexural strength is a common measure for structural 

ceramics, the uniaxial tensile strength is a more convenient form from a structural 

analysis point of view. Therefore, a statistical representation of the uniaxial tensile 

strength is adopted from Munro [122], which, assuming the specimen volumes are the 
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same, relates the four-point bend test with the quarter-point loading mean strength 

𝜎𝜎�4−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 to the uniaxial tensile mean strength 𝜎𝜎�𝑡𝑡, using the following: 

 
𝜎𝜎�4−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜎𝜎�𝑡𝑡
= �

4(𝑚𝑚 + 1)2

𝑚𝑚 + 2
�
1/𝑚𝑚

. (5.15) 

Similar relationships can be made for other loading conditions such as three-point 

bending. For further information and details, the reader is directed to Wachtman’s 

thorough discussion [123]. For scenarios when the material strength is not provided in 

terms of a tensile values, this conversion from flexural strength to tensile strength 𝜎𝜎�𝑡𝑡 is 

used to determine the structural design constraint for the optimization procedure.  

5.4.2.1 Critical Loading Condition, Stress Constraint 

This first example entails determining the optimal material variation and thickness 

of a Ti/ZrO2 FGM panel subject to a critical loading conditions. These conditions include 

a uniform temperature distribution of 800 K (in-plane and through-thickness), mechanical 

bending moments applied normal to the cylindrical cross-sections longitudinal axis, 

forces in the shearing and axial directions and aerodynamic pressure load. The magnitude 

of the loads is taken from the trajectory data during the transition from cruise to descent 

phase as indicated by the red circle in Fig. 5.25. This time step in the trajectory is chosen 

because it has been noted to generate peak structural and thermal loads. 
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Figure 5.25. Outline of functionally graded panel optimization procedure. 

Appling the method outlined in the previous section, the two-variable design optimization 

is carried out assuming a material variation profile described by Eq. (3.1) with a 

maximum ceramic content parameter 𝜂𝜂𝑧𝑧 = 1. The optimization problem for this example, 

hence forth referred to as Example 1, is formulated as  

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚:𝑚𝑚 = 𝑚𝑚(𝑡𝑡,𝑛𝑛)  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡: �
𝜎𝜎� − 1 ≤ 0

0.25 ≤ 𝑡𝑡 < 3.0
0.25 < 𝑛𝑛 < 3.0

 𝑚𝑚𝑚𝑚. 

(5.16) 

A uniform distribution of 16 design points was used to construct the initial surface 

response along with the cost function surface (mass vs. thickness and grading parameter) 

both of which are provided in Fig. 5.26. From here it can be seen that the unconstrained 

optimal point lies at the minimum thickness and grading parameter point (0.25, 0.25). 

However, examining the surrogate stress ratio 𝜎𝜎� response surface in Fig. 5.27, it can be 

seen that the feasible region must lie on 𝜎𝜎� ≤ 1.  
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 (a)  (b) 
Figure 5.26. Example 1 (a) design space sample points (b) cost function surface. 

 
Figure 5.27. Example 1 initial stress ratio surrogate response surface with red markers indicating 

the points used to construct the surface. 

The accuracy of the of the initial stress ratio surrogate using the RMSE provided in Eq. 

(5.5) was found to be 0.0879, using a random sampling of 10 points within the design 

envelope. Setting the initial point 𝑥𝑥0 equal to the average of the minimum and maximum 

of both variables, the constrained optimal design variables leads to a 58.4% reduction in 

mass when compared to the Ti/TPS configuration of 2.25 kg. The resulting optimal 

design variables for varying values of 𝜎𝜎� constraints and the corresponding volume 
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fraction distribution can be seen in Table 5-5 and Fig. 5.28, respectively. During this 

analysis five surrogate regenerations were performed using a tolerance value of 5%.  

Table 5-5. ZrO2 1D FGM panel optimal values: Critical loads. 

Thickness (mm) Grading Parameter Mass (kg)
σ/S ut t n z m
1.0 0.686 0.25 0.937
0.9 0.815 0.25 1.114
0.8 0.883 0.25 1.207
0.7 0.9662 0.25 1.321

Normalized stress Optimal Values

 

 
Figure 5.28. Example 1 resulting optimal material distribution. 

As can be seen above, the panel is ceramic dominated due to ZrO2 having a mass density 

significantly lower than that of Ti-6Al-4V (4420 vs 3657 kg/m3). Additionally, the lower 

the grading parameter 𝑛𝑛𝑧𝑧, the more uniform the stress distribution is within the panel, 

eliminating stress concentrations due to the mismatch in the phase material’s Young’s 

modulus and CTE. While this example can be seen as trivial due to the shape of the cost 

function and response surface, it serves as a verification of the proposed optimization 

process and garners confidence for more complicated models.  
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5.4.2.2 Full Trajectory Analysis, Stress Constraint  

The objective of this example (Example 2) is to highlight the capabilities of the 

proposed optimization procedure by determining the optimal design parameters of an 

FGM panel with material variation in one dimension (through-thickness). In this analysis, 

the representative geometry is subjected to temporal- and spatial-dependent heating and 

axial and shearing forces in addition to bending moments and aerodynamic pressure as a 

function of the characteristic hypersonic trajectory, as outlined in Section 5.1. As with 

Example 1, the material variation is prescribed by Eq. (3.1) with a maximum ceramic 

content parameter 𝜂𝜂𝑧𝑧 = 1, with the design bounds and constraints defined by Eq. (5.16). 

The analysis uniform sample space and the cost function surface are the same, as shown 

previously in Fig. 5.26. The stress ratio response surface with an RSME of 0.1057 over 

10 random points is provided in Fig. 5.29. 

 
Figure 5.29. Maximum stress ratio surrogate response surfaces with red markers indicating the 

points used to construct the surface. 

With no surrogate model regenerations required using a 5% tolerance on 𝜎𝜎�, the resulting 

optimal design variables and response of the time-dependent optimization are provided in 

Table 5-6. This optimal design leads to a 31.2% reduction in mass compared to the 

Ti/TPS configuration of 2.25 kg. However, it is worth noting as a reminder that this 
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analysis was performed without consideration of maximum outboard deflection or 

thermal constraints such as maximum inside wall temperature or thermal gradient. The 

following analysis will add to the current example by considering the maximum inside 

wall temperature as a thermal constraint. The resulting optimal volume fraction 

distribution for the panel subjected to temporal- and spatial-dependent thermal and 

mechanical loads is the same as shown previously in Fig. 5.28. Based on the reasoning 

previously mentioned, the graded panel is ceramic dominated. However, in this analysis, 

the effects of the full trajectory are revealed as the panel in this case has an increased 

thickness and corresponding mass.   

Table 5-6. ZrO2 1D FGM panel optimal 
values: Full trajectory analysis, stress 
constraint. 

Design Variables Optimal values
Thickness (mm), t 1.132
Grading Parameter, n z 0.250
Mass (kg), m 1.549  

5.4.2.3 Full Trajectory Analysis, Stress and Temperature Constraints  

Building on the previous analysis, a 1D optimization is carried out with 

consideration of structural and thermal constraints, referred to as Example 3. In this 

scenario, a maximum inside wall temperature 𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is used to reduce the feasible region 

to models with temperatures ≤ 𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. The design space in this example are the same as 

the previous two examples; however, introduction of the temperature constraint leads to 

the following description: 
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𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚:𝑚𝑚 = 𝑚𝑚(𝑡𝑡,𝑛𝑛)  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡:�

𝜎𝜎� − 1 ≤ 0
𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0

0.25 ≤ 𝑡𝑡 < 3.0 𝑚𝑚𝑚𝑚
0.25 < 𝑛𝑛 < 3.0

  

(5.17) 

where 𝑇𝑇𝑖𝑖𝑖𝑖 is the maximum time-dependent inside wall temperature during the trajectory. 

Enforcement of the thermal constraint requires surrogate response surfaces of 𝑇𝑇𝑖𝑖𝑖𝑖 as 

shown in Fig. 5.30. The RMSE of the initial response surface was determined to be 5.121 

K for the uniform grid sample. Enforcement of the stress constraint is handled in the 

same fashion as the previous example with the stress ratio response surface in Fig. 5.29. 

Table 5-7 shows the optimal design parameters and resulting mass when the optimization 

is constrained by varying 𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜎𝜎� = 1.   

 
Figure 5.30. Maximum inside temperature wall temperature surrogate response surface. 
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Table 5-7. ZrO2 1D FGM panel optimal values: Full trajectory 
analysis, stress and temperature constraint. 

Thickness (mm) Grading Parameter Mass (kg)
t n z m

950 1.132 0.25 1.549
900 1.629 0.25 2.232
850 2.866 0.25 3.939

Max. Inside Wall 
Temp. (K)

Optimal Values

 

As is shown in the above Table, introduction of the maximum inside wall temperature 

constraint results in an increase in the thickness and accordingly the mass of the panel. 

Additionally, it can be seen that for 𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 850 𝐾𝐾 the mass of the panel exceeds that of 

the base design, thus emphasizing the importance of incorporating thermal design 

constraints into the optimization procedure.  
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CHAPTER 6  

CONCLUSIONS 

This dissertation investigates the effective thermostructural response of spatially 

tailored metal-ceramic composites for use in the hypersonic environment. To achieve 

this, an all-inclusive numerical framework has been proposed to study the effective 

material properties of graded hypersonic airframes and the effective thermostructural 

response when subjected to representative hypersonic thermal and structural loads. 

Additionally, using information regarding the effective material properties and effective 

thermostructural response, the developed model is used to determine desirable material 

distribution to create an optimal or enhanced system response using a developed 

optimization procedure.   

 Modeling of Graded Microstructures 

Numerical algorithms enabling the creation of artificial graded microstructures 

consisting of disks and spheres, representing particulate-reinforced functionally graded 

composite materials, has been developed. The algorithms have been efficiently 

constructed by linking the packing algorithms coded in FORTRAN, with Abaqus/CAE 

using the Python scripting interface to create high-resolution graded microstructures with 

dense packing fractions up to 0.61 and 0.91 for 2D and 3D geometries, respectively. 

Realization of dense packing fractions enables one to investigate the effective properties 

of particulate-reinforced composites over a wider reinforcement volume fraction range 

when compared to those reported in the literature.   

 Effective Material Properties of Graded Composites 

Effective thermomechanical properties of Ti/TiB2 metal-ceramic functionally 

graded composite materials have been obtained over a wide temperature range up to 500 

°C. A comprehensive study has been performed to determine the validity of using 
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classical homogenization techniques, which were originally developed for fixed volume 

fraction composites, for FGMs with 1D and 2D grading. Both variational bounds and 

finite element numerical homogenization of RVEs were studied. Two different types of 

RVEs (Piecewise Layered RVE and Continuous FGM RVE) were created and analyzed 

to determine an adequate representative model for numerical homogenization. Moreover, 

the effect of grading on the estimation of the effective property was also studied. To 

evaluate this potential influence, three types of material grading were analyzed: a linear 

smooth transition from metal to ceramic, a quadratic distribution resulting in a slow 

transition and a square root distribution with a rapid transition from metal to ceramic. 

Each choice of RVE was found to produce similar results when compared to the others. 

Furthermore, both models were found to produce similar effective properties to those 

obtained from 3D Layered RVE models. Lastly, models were found to be within or close 

to the rigorous Hashin and Shtrikman, Schapery and Rosen and Hashin bounds of 

elasticity, thermal conductivity, thermal expansion and specific heat, respectively. In 

short, it was found that the choice of RVE and the influence of grading did not have a 

significant effect on the estimation of the effective properties of the metal-ceramic graded 

composites.  

Detailed investigations were performed on the effects of transition zones, which 

are regions where the properties of the FGM are neither matrix, nor reinforcement 

dominated (i.e., the volume fractions of the constituents are comparable). It was found 

that effective properties obtained using numerical homogenization are greatly dependent 

on the assumptions regarding the evolution of the microstructure and the assignment of 

the matrix and reinforcement phases. Therefore, image-based modeling of actual 

microstructures might be beneficial for obtaining the effective properties at the transition 

zones.  

The proposed holistic model was validated by extending the modeling capabilities 

to incorporate a third material phase. By assigning void material properties to this third 
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phase, the obtained effected properties were compared to those obtained experimentally 

for each respective material parameter. It was found that the proposed model can 

accurately predict the effective material response of materials exhibiting spatially 

dependent material concentration and thus spatially dependent material properties.  

Lastly, using the extended three-phase model, the effect of manufacturing defects 

or enhancements, such as voids and porosity, were studied. Here, the quantity and 

distribution profile of porosity was examined to understand the role of voids on the 

effective thermostructural response. In general, this study found that the magnitude of the 

porosity had a greater influence on the effective response when compared to the 

morphology or variation of porosity in the heterogeneous material system.   

 Thermostructural Analysis of Functionally Graded Hypersonic Panels 

The thermomechanical response of Ti/TPS and Ti/TiB2 FGM structural panels for 

a high-speed airframe was evaluated. In this analysis, heating loads with spatial 

dependence on the clocking angle (known here as uniform) were applied to the structures. 

Thermal response of the Ti/TiB2 FGM exhibiting material variation in the through-

thickness direction only were found to drastically reduce the through-thickness 

temperature gradient found in the Ti/TPS benchmark investigation. As a result of 

reducing the through-thickness temperature gradients and the amount of contrast in the 

stiffness and thermal expansion, a reduction in the through-thickness stress 

concentrations in this time range were observed. Moreover, in addition to a uniform 

temperature and reduction in stress gradients, the deformation and overall panel weight 

was also reduced. 

The concept of spatial variation was further exploited by considering the thermal 

response of Ti/TPS and Ti/TiB2 FGM structural panels with 1D and 2D material 

variation. Heating loads with spatial dependence on the clocking angle and longitudinal 

axis (known here as non-uniform) were applied to the structural panels. Results of this 
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study indicate that 1D and 2D graded structures can eliminate the through-thickness 

temperature gradients in addition to significantly reducing the in-plane surface 

temperature gradients, with 2D grading offering the greatest reduction.  

 Optimization of Spatially Tailored Materials 

The optimization of heterogeneous materials has been demonstrated by 

investigating a Ti/Zr metal-ceramic FGM thermostructural panel operating in the 

hypersonic environment. In this study, an adaptive surrogate modeling technique was 

employed to reduce the computation cost associated with analyzing a wide design space 

along with a sequential quadratic programing algorithm to determine desirable material 

variation. Three different optimization problems were formulated to study the effect of 

constraints and loading history on the optimal material distribution. In the first 

exploration, a steady-state analysis was performed using a uniform temperature 

distribution and maximum structural loading in the supplied data. The second and third 

analyses utilized thermal and structural loads with full temporal dependence and stress 

only and stress/temperature constraints, respectively. Results of each of these studies 

demonstrate that incorporating spatially tailored materials into structural designs allows 

them to operate in the harsh hypersonic environment and at the same time creates a 

structure with reduced system mass by exploiting the concept of multifunctionality.   
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